350
Views
8
CrossRef citations to date
0
Altmetric
Review

Personalized treatment options for thyroid cancer: current perspectives

, , , , &
Pages 235-245 | Published online: 13 Sep 2019

References

  • Flores M, Glusman G, Brogaard K, Price ND, Hood L. P4 medicine: how systems medicine will transform the healthcare sector and society. Per Med 2013;10(6):565–576. doi:10.2217/pme.13.57
  • Movafagh A. Personalised medicine in modern era. Asian Pac J Cancer Biol. 2016;1:2.
  • Turnbull AK. Personalized medicine in cancer: where are we today? Future Oncol. 2015;11(20):2795–2798. doi:10.2217/fon.15.20426344657
  • Keller EF. The century beyond the gene. J Biosci. 2005;30(1):3–10.15824435
  • Holohan C, Van Schaeybroeck S, Longley DB, Johnston PG. Cancer drug resistance: an evolving paradigm. Nature Rev Cancer. 2013;13(10):714. doi:10.1038/nrc359924060863
  • Giaccone G, Pinedo HM. Drug resistance. Oncologist. 1996;1(1 & 2):82–87.10387972
  • Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69–90. doi:10.3322/caac.2010721296855
  • Larijani B, Mohagheghi MA, Bastanhagh MH, et al. Primary thyroid malignancies in Tehran, Iran. Med principles pract. 2005;14(6):396–400. doi:10.1159/000088112
  • Haghpanah V, Soliemanpour B, Heshmat R, et al. Endocrine cancer in Iran: based on cancer registry system. Indian J Cancer. 2006;43(2):80. doi:10.4103/0019-509X.2588916790945
  • Larijani B, Shirzad M, Mohagheghi M, et al. Epidemiologic analysis of the Tehran cancer institute data system registry (TCIDSR). Asian Pac J Cancer Prev. 2004;5(1):36–39.15075002
  • Katoh H, Yamashita K, Enomoto T, Watanabe M. Classification and general considerations of thyroid cancer. Ann Clin Pathol. 2015;3(1):1045.
  • Pozdeyev N, Gay LM, Sokol ES, et al. Genetic analysis of 779 advanced differentiated and anaplastic thyroid cancers. Clin Cancer Res. 2018;24(13):3059–3068. doi:10.1158/1078-0432.CCR-18-037329615459
  • Lin J-D, Chao T-C. Vascular endothelial growth factor in thyroid cancers. Cancer Biother Radiopharm. 2005;20(6):648–661. doi:10.1089/cbr.2005.20.64816398617
  • Capp C, Wajner SM, Siqueira DR, Brasil BA, Meurer L, Maia AL. Increased expression of vascular endothelial growth factor and its receptors, VEGFR-1 and VEGFR-2, in medullary thyroid carcinoma. Thyroid. 2010;20(8):863–871. doi:10.1089/thy.2009.041720615131
  • Agaimy A, Terracciano L, Dirnhofer S, et al. V600E BRAF mutations are alternative early molecular events in a subset of KIT/PDGFRA wild-type gastrointestinal stromal tumours. J Clin Pathol. 2009;62(7):613–616. doi:10.1136/jcp.2009.06455019561230
  • Kim M-J, Kim SK, Park HJ, et al. PDGFRA promoter polymorphisms are associated with the risk of papillary thyroid cancer. Mol Med Rep. 2012;5(5):1267–1270. doi:10.3892/mmr.2012.78422327316
  • Chowdhury S, Veyhl J, Jessa F, et al. Programmed death-ligand 1 overexpression is a prognostic marker for aggressive papillary thyroid cancer and its variants. Oncotarget. 2016;7(22):32318. doi:10.18632/oncotarget.869827086918
  • Ameur N, Lacroix L, Motte N, et al. Mutational status of EGFR, BRAF, PI3KCA and JAK2 genes in endocrine tumors. Int J cancer. 2009;124(3):751–753. doi:10.1002/ijc.2399919003996
  • Tomczak K, Czerwińska P, Wiznerowicz M. The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge. Contemp Oncol (Pozn). 2015;19(1A):A68–A77. doi:10.5114/wo.2014.4713625691825
  • Nikiforova MN, Nikiforov YE. Molecular genetics of thyroid cancer: implications for diagnosis, treatment and prognosis. Expert Rev Mol Diagn. 2008;8(1):83–95. doi:10.1586/14737159.8.1.8318088233
  • Xing M. BRAF mutation in thyroid cancer. Endocr Relat Cancer. 2005;12(2):245–262. doi:10.1677/erc.1.097815947100
  • Zuidervaart W, van Nieuwpoort F, Stark M, et al. Activation of the MAPK pathway is a common event in uveal melanomas although it rarely occurs through mutation of BRAF or RAS. Br J Cancer. 2005;92(11):2032–2038. doi:10.1038/sj.bjc.660259815928660
  • Kim WW, Ha TK, Bae SK. Clinical implications of the BRAF mutation in papillary thyroid carcinoma and chronic lymphocytic thyroiditis. J Otolaryngol Head Neck Surg. 2018;47(1):4. doi:10.1186/s40463-017-0247-629316976
  • Quinlan MP, Settleman J. Isoform-specific ras functions in development and cancer. Future Oncol 2009;5(1):105–116. doi:10.2217/14796694.5.1.105
  • Xing M. Clinical utility of RAS mutations in thyroid cancer: a blurred picture now emerging clearer. BMC Med. 2016;14(1):12. doi:10.1186/s12916-016-0559-926817707
  • Nozhat Z, Hedayati M. PI3K/AKT pathway and its mediators in thyroid carcinomas. Mol Diagn Ther. 2016;20(1):13–26. doi:10.1007/s40291-015-0175-y26597586
  • Nagy R, Ganapathi S, Comeras I, et al. Frequency of germline PTEN mutations in differentiated thyroid cancer. Thyroid. 2011;21(5):505–510. doi:10.1089/thy.2010.036521417916
  • Sarmadi S, Izadi-Mood N, Sotoudeh K, Tavangar SM. Altered PTEN expression; a diagnostic marker for differentiating normal, hyperplastic and neoplastic endometrium. Diagn Pathol. 2009;4(1):41. doi:10.1186/1746-1596-4-4119930726
  • García-Rostán G, Costa AM, Pereira-Castro I, et al. Mutation of the PIK3CA gene in anaplastic thyroid cancer. Cancer Res. 2005;65(22):10199–10207. doi:10.1158/0008-5472.CAN-04-425916288007
  • Wu G, Mambo E, Guo Z, et al. Uncommon mutation, but common amplifications, of the PIK3CA gene in thyroid tumors. J Clin Endocrinol Metab. 2005;90(8):4688–4693. doi:10.1210/jc.2004-228115928251
  • Xing M. Molecular pathogenesis and mechanisms of thyroid cancer. Nature Rev Cancer. 2013;13(3):184. doi:10.1038/nrc343123429735
  • Lin Y, Jiang X, Shen Y, et al. Frequent mutations and amplifications of the PIK3CA gene in pituitary tumors. Endocr Relat Cancer. 2009;16(1):301–310. doi:10.1677/ERC-08-016718852163
  • Liu Z, Hou P, Ji M, et al. Highly prevalent genetic alterations in receptor tyrosine kinases and PI3K/Akt and MAP kinase pathways in anaplastic and follicular thyroid cancers. Med Baltimore. 2008;1500:21287.
  • Soares P, Celestino R, Melo M, Fonseca E, Sobrinho-Simões M. Prognostic biomarkers in thyroid cancer. Virchows Archiv. 2014;464(3):333–346. doi:10.1007/s00428-013-1521-224487783
  • Xing MM Genetic amplification of IQGAP1 in cancer. Google Patents; 2015.
  • Liu Z, Xie Liu D, Bojdani E, El-Naggar AK, Vasko V, Xing M. IQGAP1 plays an important role in the invasiveness of thyroid cancer. Clin Cancer Res. 2010 clincanres. 1627.2010. doi:10.1158/1078-0432.CCR-10-1627
  • Nakazawa T, Kondo T, Kobayashi Y, et al. RET gene rearrangements (RET/PTC1 and RET/PTC3) in papillary thyroid carcinomas from an iodine‐rich country (Japan). Cancer. 2005;104(5):943–951. doi:10.1002/cncr.2127016015630
  • Eberhardt NL, Grebe SK, McIver B, Reddi HV. The role of the PAX8/PPARγ fusion oncogene in the pathogenesis of follicular thyroid cancer. Mol Cell Endocrinol. 2010;321(1):50–56. doi:10.1016/j.mce.2009.10.01319883731
  • Castro P, Rebocho A, Soares R, et al. PAX8-PPAR γ rearrangement is frequently detected in the follicular variant of papillary thyroid carcinoma. J Clin Endocrinol Metab. 2006;91(1):213–220. doi:10.1210/jc.2005-133616219715
  • Russo D, Damante G, Puxeddu E, Durante C, Filetti S. Epigenetics of thyroid cancer and novel therapeutic targets. J Mol Endocrinol. 2011;46(3):R73-81. doi:10.1530/JME-10-0150
  • Schagdarsurengin U, Gimm O, Hoang-Vu C, Dralle H, Pfeifer GP, Dammann R. Frequent epigenetic silencing of the CpG island promoter of RASSF1A in thyroid carcinoma. Cancer Res. 2002;62(13):3698–3701.12097277
  • Mohammadi-asl J, Larijani B, Khorgami Z, et al. Qualitative and quantitative promoter hypermethylation patterns of the P16, TSHR, RASSF1A and RARβ2 genes in papillary thyroid carcinoma. Med Oncol. 2011;28(4):1123–1128. doi:10.1007/s12032-010-9587-z20535589
  • Khatami F, Tavangar SM. Genetic and epigenetic of medullary thyroid cancer. Iran Biomed J. 2018;22(3):142.29126344
  • Xing M, Usadel H, Cohen Y, et al. Methylation of the thyroid-stimulating hormone receptor gene in epithelial thyroid tumors: a marker of malignancy and a cause of gene silencing. Cancer Res. 2003;63(9):2316–2321.12727856
  • Hoque M, Rosenbaum E, Westra W, et al. Quantitative assessment of promoter methylation profiles in thyroid neoplasms. J Clin Endocrinol Metab. 2005;90(7):4011–4018. doi:10.1210/jc.2005-031315840741
  • Alvarez-Nuñez F, Bussaglia E, Mauricio D, et al. PTEN promoter methylation in sporadic thyroid carcinomas. Thyroid. 2006;16(1):17–23. doi:10.1089/thy.2006.16.1716487009
  • Khatami F, Larijani B, Heshmat R, et al. Meta-analysis of promoter methylation in eight tumor-suppressor genes and its association with the risk of thyroid cancer. PLoS One. 2017;12(9):e0184892. doi:10.1371/journal.pone.018489228926589
  • Cai -L-L, Liu G-Y, Tzeng C-M. Genome-wide DNA methylation profiling and its involved molecular pathways from one individual with thyroid malignant/benign tumor and hyperplasia: a case report. Medicine. 2016;95:35. doi:10.1097/MD.0000000000004864
  • Pallante P, Visone R, Ferracin M, et al. MicroRNA deregulation in human thyroid papillary carcinomas. Endocr Relat Cancer. 2006;13(2):497–508. doi:10.1677/erc.1.0120916728577
  • Yip L, Kelly L, Shuai Y, et al. MicroRNA signature distinguishes the degree of aggressiveness of papillary thyroid carcinoma. Ann Surg Oncol. 2011;18(7):2035–2041. doi:10.1245/s10434-011-1733-021537871
  • Ramírez-Moya J, Wert-Lamas L, Santisteban P. MicroRNA-146b promotes PI3K/AKT pathway hyperactivation and thyroid cancer progression by targeting PTEN. Oncogene. 2018;37(25):3369–3383. doi:10.1038/s41388-017-0088-9
  • Natanzi MM, Pasalar P, Kamalinejad M, et al. Effect of aqueous extract of Elaeagnus angustifolia fruit on experimental cutaneous wound healing in rats. Acta Med Iran. 2012;50(9):589–596.23165807
  • Alimoghaddam K, Shariftabrizi A, Tavangar M, et al. Anti-leukemic and anti-angiogenesis efficacy of arsenic trioxide in new cases of acute promyelocytic leukemia. Leuk Lymphoma. 2006;47(1):81–88. doi:10.1080/1042819050030037316321832
  • Parvizi MR, Parviz M, Tavangar SM, et al. Protective effect of magnesium on renal function in STZ-induced diabetic rats. J Diabetes Metab Disord. 2014;13(1):84. doi:10.1186/s40200-014-0084-325197628
  • Tavangar SM, Larijani B, Mahta A, Hosseini SMA, Mehrazine M, Bandarian F. Craniopharyngioma: a clinicopathological study of 141 cases. Endocr Pathol. 2004;15(4):339–344.15681858
  • Bongiovanni M, Spitale A, Faquin WC, Mazzucchelli L, Baloch ZW. The Bethesda system for reporting thyroid cytopathology: a meta-analysis. Acta Cytol. 2012;56(4):333–339. doi:10.1159/00033995922846422
  • Omidfar K, Moinfar Z, Sohi AN, et al. Expression of EGFRvIII in thyroid carcinoma: immunohistochemical study by camel antibodies. Immunol Invest. 2009;38(2):165–180. doi:10.1080/0882013090273599819330625
  • Haghpanah V, Shooshtarizadeh P, Heshmat R, Larijani B, Tavangar SM. Immunohistochemical analysis of survivin expression in thyroid follicular adenoma and carcinoma. Appl Immunohistochem Mol Morphol. 2006;14(4):422–425. doi:10.1097/01.pai.0000213100.88074.b817122639
  • Saffar H, Sanii S, Emami B, et al. Evaluation of MMP2 and Caspase-3 expression in 107 cases of papillary thyroid carcinoma and its association with prognostic factors. Pathol Res Pract. 2013;209(3):195–199. doi:10.1016/j.prp.2012.06.01123384723
  • Haddadi-Nezhad S, Larijani B, Tavangar SM, Nouraei SM. Comparison of fine-needle-nonaspiration with fine-needle-aspiration technique in the cytologic studies of thyroid nodules. Endocr Pathol. 2003;14(4):369–373.14739493
  • Sanii S, Saffar H, Tabriz HM, Qorbani M, Haghpanah V, Tavangar SM. Expression of matrix metalloproteinase-2, but not caspase-3, facilitates distinction between benign and malignant thyroid follicular neoplasms. Asian Pac J Cancer Prev. 2012;13(5):2175–2178. doi:10.7314/apjcp.2012.13.5.217522901190
  • Tabriz HM, Adabi K, Lashkari A, et al. Immunohistochemical analysis of nm23 protein expression in thyroid papillary carcinoma and follicular neoplasm. Pathol Res Pract. 2009;205(2):83–87. doi:10.1016/j.prp.2008.08.00718996649
  • Zhang M, Lin O. Molecular testing of thyroid nodules: a review of current available tests for fine-needle aspiration specimens. Arch Pathol Lab Med. 2016;140(12):1338–1344. doi:10.5858/arpa.2016-0100-RA27557410
  • Chudova D, Wilde JI, Wang ET, et al. Molecular classification of thyroid nodules using high-dimensionality genomic data. J Clin Endocrinol Metab. 2010;95(12):5296–5304. doi:10.1210/jc.2010-108720826580
  • Alexander EK, Kennedy GC, Baloch ZW, et al. Preoperative diagnosis of benign thyroid nodules with indeterminate cytology. N Engl J Med. 2012;367(8):705–715. doi:10.1056/NEJMoa120320822731672
  • Marti JL, Avadhani V, Donatelli LA, et al. Wide inter-institutional variation in performance of a molecular classifier for indeterminate thyroid nodules. Ann Surg Oncol. 2015;22(12):3996–4001. doi:10.1245/s10434-015-4486-325862581
  • Duick DS, Klopper JP, Diggans JC, et al. The impact of benign gene expression classifier test results on the endocrinologist–patient decision to operate on patients with thyroid nodules with indeterminate fine-needle aspiration cytopathology. Thyroid. 2012;22(10):996–1001. doi:10.1089/thy.2012.018022873825
  • Saji M, Ringel MD. The PI3K-Akt-mTOR pathway in initiation and progression of thyroid tumors. Mol Cell Endocrinol. 2010;321(1):20–28. doi:10.1016/j.mce.2009.10.01619897009
  • Pallante P, Battista S, Pierantoni GM, Fusco A. Deregulation of microRNA expression in thyroid neoplasias. Nature Rev Endocrinol. 2014;10(2):88. doi:10.1038/nrendo.2013.22324247220
  • Stokowy T, Wojtaś B, Krajewska J, et al. A two miRNA classifier differentiates follicular thyroid carcinomas from follicular thyroid adenomas. Mol Cell Endocrinol. 2015;399:43–49. doi:10.1016/j.mce.2014.09.01725258301
  • Nikiforova MN, Wald AI, Roy S, Durso MB, Nikiforov YE. Targeted next-generation sequencing panel (ThyroSeq) for detection of mutations in thyroid cancer. J Clin Endocrinol Metab. 2013;98(11):E1852–E1860. doi:10.1210/jc.2013-229223979959
  • Nikiforov YE, Carty SE, Chiosea SI, et al. Highly accurate diagnosis of cancer in thyroid nodules with follicular neoplasm/suspicious for a follicular neoplasm cytology by ThyroSeq v2 next‐generation sequencing assay. Cancer. 2014;120(23):3627–3634. doi:10.1002/cncr.2903825209362
  • Le Mercier M, D’haene N, De Nève N, et al. Next‐generation sequencing improves the diagnosis of thyroid FNA specimens with indeterminate cytology. Histopathology. 2015;66(2):215–224. doi:10.1111/his.1246124834793
  • Singer PA, Cooper DS, Daniels GH, et al. Treatment guidelines for patients with thyroid nodules and well-differentiated thyroid cancer. Arch Int Med. 1996;156(19):2165–2172.8885814
  • Higashi T, Kudo T, Kinuya S. Radioactive iodine (131 I) therapy for differentiated thyroid cancer in Japan: current issues with historical review and future perspective. Ann Nucl Med. 2012;26(2):99–112. doi:10.1007/s12149-011-0553-422081274
  • Tubiana M, Haddad E, Schlumberger M, Hill C, Rougier P, Sarrazin D. External radiotherapy in thyroid cancers. Cancer. 1985;55(S9):2062–2071. doi:10.1002/1097-0142(19850501)55:9+<2062::aid-cncr2820551406>3.0.co;2-o3919920
  • Brierley JD, Tsang RW, editors. External‐beam radiation therapy in the treatment of differentiated thyroid cancer. Semin Surg Oncol. 1999. Wiley Online Library. doi:10.1002/(SICI)1098-2388(199901/02)16:1<42::AID-SSU8>3.0.CO;2-4
  • Sherman SI. Targeted therapy of thyroid cancer. Biochem Pharmacol. 2010;80(5):592–601. doi:10.1016/j.bcp.2010.05.00320471374
  • Degrauwe N, Sosa JA, Roman S, Deshpande HA. Vandetanib for the treatment of metastatic medullary thyroid cancer. Clin Med Insights Oncol. 2012;6:CMO. S7999. doi:10.4137/CMO.S7999
  • Hoy SM. Cabozantinib: a review of its use in patients with medullary thyroid cancer. Drugs. 2014;74(12):1435–1444. doi:10.1007/s40265-014-0265-x25056653
  • Fallahi P, Ferrari SM, Santini F, et al. Sorafenib and thyroid cancer. BioDrugs. 2013;27(6):615–628. doi:10.1007/s40259-013-0049-y23818056
  • Cabanillas ME, Habra MA. Lenvatinib: role in thyroid cancer and other solid tumors. Cancer Treat Rev. 2016;42:47–55. doi:10.1016/j.ctrv.2015.11.00326678514
  • Ballantyne AD, Garnock-Jones KP. Dabrafenib: first global approval. Drugs. 2013;73(12):1367–1376. doi:10.1007/s40265-013-0095-223881668
  • McGETTIGAN S. Dabrafenib: a new therapy for use in BRAF-mutated metastatic melanoma. J Adv Pract Oncol. 2014;5(3):211.25089220
  • Subbiah V, Kreitman RJ, Wainberg ZA, et al. Dabrafenib and trametinib treatment in patients with locally advanced or metastatic BRAF V600–mutant anaplastic thyroid cancer. J Clin Oncol. 2018;36(1):7. doi:10.1200/JCO.2017.73.678529072975
  • Jeelani S, Reddy RJ, Maheswaran T, Asokan G, Dany A, Anand B. Theranostics: a treasured tailor for tomorrow. J Pharm Bioallied Sci. 2014;6(Suppl 1):S6. doi:10.4103/0975-7406.13724925210387
  • Oh J-R, Ahn B-C, Jeong SY, Lee S-W, Lee J. Radioiodine scan index: a simplified, quantitative treatment response parameter for metastatic thyroid carcinoma. Nucl Med Mol Imaging (2010). 2015;49(3):174–181. doi:10.1007/s13139-015-0335-3
  • Kim D-H, Jung J-H, Son SH, et al. Difference of clinical and radiological characteristics according to radioiodine avidity in pulmonary metastases of differentiated thyroid cancer. Nucl Med Mol Imaging (2010). 2014;48(1):55–62. doi:10.1007/s13139-013-0239-z
  • Hong C, Ahn B-C, Jeong S, Lee S-W, Lee J. Distant metastatic lesions in patients with differentiated thyroid carcinoma. Nuklearmedizin. 2013;52(04):121–129. doi:10.3413/Nukmed-0541-12-1123928981
  • Lee JW, Min HS, Lee SM, Kwon HW, Chung J-K. Relations between pathological markers and radioiodine scan and 18 F-FDG PET/CT findings in papillary thyroid cancer patients with recurrent cervical nodal metastases. Nucl Med Mol Imaging (2010). 2015;49(2):127–134. doi:10.1007/s13139-015-0324-6
  • Spitzweg C, Bible KC, Hofbauer LC, Morris JC. Advanced radioiodine-refractory differentiated thyroid cancer: the sodium iodide symporter and other emerging therapeutic targets. lancet Diabetes endocrinol. 2014;2(10):830–842. doi:10.1016/S2213-8587(14)70051-824898835
  • Micali S, Bulotta S, Puppin C, et al. Sodium iodide symporter (NIS) in extrathyroidal malignancies: focus on breast and urological cancer. BMC Cancer. 2014;14(1):303. doi:10.1186/1471-2407-14-30324884806
  • Plantinga TS, Heinhuis B, Gerrits D, et al. mTOR Inhibition promotes TTF1-dependent redifferentiation and restores iodine uptake in thyroid carcinoma cell lines. J Clin Endocrinol Metab. 2014;99(7):E1368–E1375. doi:10.1210/jc.2014-117124712572
  • Wong K-P, Lang B-H-H. New molecular targeted therapy and redifferentiation therapy for radioiodine-refractory advanced papillary thyroid carcinoma: literature review. J Thyroid Res. 2012;2012:818204. doi:10.1155/2012/818204
  • Rothenberg SM, McFadden DG, Palmer EL, Daniels GH, Wirth LJ. Redifferentiation of iodine-refractory BRAF V600E-mutant metastatic papillary thyroid cancer with dabrafenib. Clin Cancer Res. 2015;21(5):1028–1035. doi:10.1158/1078-0432.CCR-14-291525549723
  • Drilon A, Laetsch TW, Kummar S, et al. Efficacy of larotrectinib in TRK fusion–positive cancers in adults and children. N Engl J Med. 2018;378(8):731–739. doi:10.1056/NEJMoa171444829466156
  • Laetsch TW, DuBois SG, Mascarenhas L, et al. Larotrectinib for paediatric solid tumours harbouring NTRK gene fusions: phase 1 results from a multicentre, open-label, phase 1/2 study. Lancet Oncol. 2018;19(5):705–714. doi:10.1016/S1470-2045(18)30119-029606586
  • Yip L. Molecular markers for thyroid cancer diagnosis, prognosis, and targeted therapy. J Surg Oncol. 2015;111(1):43–50. doi:10.1002/jso.2376825155423
  • Landa I, Ganly I, Chan TA, et al. Frequent somatic TERT promoter mutations in thyroid cancer: higher prevalence in advanced forms of the disease. J Clin Endocrinol Metab. 2013;98(9):E1562–E1566. doi:10.1210/jc.2013-238323833040
  • Liu X, Bishop J, Shan Y, et al. Highly prevalent TERT promoter mutations in aggressive thyroid cancers. Endocr Relat Cancer. 2013;20(4):603–610. doi:10.1530/ERC-13-021023766237
  • Shoup M, Stojadinovic A, Nissan A, et al. Prognostic indicators of outcomes in patients with distant metastases from differentiated thyroid carcinoma. J Am Coll Surg. 2003;197(2):191–197. doi:10.1016/S1072-7515(03)00332-612892796
  • Sherman SI, Wirth LJ, Droz J-P, et al. Motesanib diphosphate in progressive differentiated thyroid cancer. N Engl J Med. 2008;359(1):31–42. doi:10.1056/NEJMoa07585318596272
  • Ho AL, Grewal RK, Leboeuf R, et al. Selumetinib-enhanced radioiodine uptake in advanced thyroid cancer. N Engl J Med. 2013;368(7):623–632. doi:10.1056/NEJMoa120928823406027
  • Kim KB, Cabanillas ME, Lazar AJ, et al. Clinical responses to vemurafenib in patients with metastatic papillary thyroid cancer harboring BRAFV600E mutation. Thyroid. 2013;23(10):1277–1283. doi:10.1089/thy.2013.005723489023
  • Sherman SI. Tyrosine kinase inhibitors and the thyroid. Best Pract Res Clin Endocrinol Metab. 2009;23(6):713–722. doi:10.1016/j.beem.2009.08.00119942148
  • Cohen EE, Rosen LS, Vokes EE, et al. Axitinib is an active treatment for all histologic subtypes of advanced thyroid cancer: results from a phase II study. J Clin Oncol. 2008;26(29):4708. doi:10.1200/JCO.2007.15.277718541897
  • Carr LL, Mankoff DA, Goulart BH, et al. Phase II study of daily sunitinib in FDG-PET–positive, iodine-refractory differentiated thyroid cancer and metastatic medullary carcinoma of the thyroid with functional imaging correlation. Clin Cancer Res. 2010;16(21):5260–5268. doi:10.1158/1078-0432.CCR-10-099420847059
  • Khatami F, Larijani B, Tavangar SM. Circulating tumor BRAF mutation and personalized thyroid cancer treatment. Asian Pacif j cancer prev. 2017;18(2):293. doi:10.22034/APJCP.2017.18.1.23
  • Brose MS, Cabanillas ME, Cohen EE, et al. Vemurafenib in patients with BRAFV600E-positive metastatic or unresectable papillary thyroid cancer refractory to radioactive iodine: a non-randomised, multicentre, open-label, phase 2 trial. Lancet Oncol. 2016;17(9):1272–1282. doi:10.1016/S1470-2045(16)30166-827460442
  • Ferrari SM, Ruffilli I, Centanni M, et al. Lenvatinib in the therapy of aggressive thyroid cancer: state of the art and new perspectives with patents recently applied. Recent Pat Anticancer Drug Discov. 2018;13(2):201–208. doi:10.2174/157489281366618022011072929468981
  • Balmelli C, Railic N, Siano M, et al. Lenvatinib in advanced radioiodine-refractory thyroid cancer – a retrospective analysis of the Swiss Lenvatinib Named Patient Program. J Cancer. 2018;9(2):250–255. doi:10.7150/jca.2231829344270
  • Le DT, Durham JN, Smith KN, et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science. 2017;357(6349):409–413. doi:10.1126/science.aan673328596308
  • Barbolosi D, Summer I, Meille C, et al. Modeling therapeutic response to radioiodine in metastatic thyroid cancer: a proof-of-concept study for individualized medicine. Oncotarget. 2017;8(24):39167. doi:10.18632/oncotarget.1663728389624
  • Liu Y, Gunda V, Zhu X, et al. Theranostic near-infrared fluorescent nanoplatform for imaging and systemic siRNA delivery to metastatic anaplastic thyroid cancer. Proc National Acad Sci. 2016;113(28):7750–7755. doi:10.1073/pnas.1605841113
  • Pan Y, Liu P, Chen D, Dou L. Small interfering RNA (siRNA) against Slug induces apoptosis and sensitizes human anaplastic thyroid carcinoma cells to doxorubicin. Cancer Biomarkers. 2017;18(4):357–366. doi:10.3233/CBM-16019228128736
  • Fadda G, Rossi ED. Liquid-based cytology in fine-needle aspiration biopsies of the thyroid gland. Acta Cytol. 2011;55(5):389–400. doi:10.1159/00032902921986164
  • Khatami F, Larijani B, Tavangar SM. The presence of tumor extrachomosomal circular DNA (ecDNA) as a component of liquid biopsy in blood. Med Hypotheses. 2018;114:5–7. doi:10.1016/j.mehy.2018.02.01829602465
  • Khatami F, Tavangar SM. Liquid biopsy in thyroid cancer: new Insight. Int J Hematol Oncol Stem Cell Res. 2018;12(3):235.30595827
  • Bardelli A. Medical research: personalized test tracks cancer relapse. Nature. 2017;545(7655):417. doi:10.1038/545417a28541318
  • Yu S, Liu Y, Wang J, et al. Circulating microRNA profiles as potential biomarkers for diagnosis of papillary thyroid carcinoma. J Clin Endocrinol Metab. 2012;97(6):2084–2092. doi:10.1210/jc.2011-305922472564