114
Views
1
CrossRef citations to date
0
Altmetric
Original Research

Association Between CYP17A1, CYB5A Polymorphisms and Efficacy of Abiraterone Acetate/Prednisone Treatment in Castration-Resistant Prostate Cancer Patients

, , , , &
Pages 181-188 | Published online: 04 Jun 2020

References

  • Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin. 2018;60(5):277–300.
  • Scher HI, Sawyers CL. Biology of progressive, castration-resistant prostate cancer: directed therapies targeting the androgen-receptor signaling axis. J Clin Oncol. 2005;23(32):8253–8261. doi:10.1200/JCO.2005.03.477716278481
  • Lin DW. Commentary on Selective inhibition of CYP17 with abiraterone acetate is highly active in the treatment of castration-resistant prostate cancer. Urol Oncol Semin Ori. 2009;27(6):690–691.
  • Yu C, Clegg NJ, Scher HI. Anti-androgens and androgen-depleting therapies in prostate cancer: new agents for an established target. Lancet Oncol. 2010;57(2):356–357.
  • Eisenberger MA, Blumenstein BA, Crawford ED, et al. Bilateral orchiectomy with or without flutamide for metastatic prostate cancer. New Engl J Med. 1998;339(15):1036–1042. doi:10.1056/NEJM1998100833915049761805
  • Aneja S, Pratiwadi RR, Yu JB. Hypofractionated radiation therapy for prostate cancer: risks and potential benefits in a fiscally conservative health care system. Oncology. 2012;26(6):512.22870533
  • Lam JS, Leppert JT, Vemulapalli SN, Shvarts O, Belldegrun AS. Secondary hormonal therapy for advanced prostate cancer. J Urol. 2006;175(1):27–34. doi:10.1016/S0022-5347(05)00034-016406864
  • Ryan CJ, Small EJ. Role of secondary hormonal therapy in the management of recurrent prostate cancer. Urology. 2003;62(6B):87–94. doi:10.1016/j.urology.2003.10.00214747046
  • Kosaka T, Miyajima A, Nagata H, Maeda T, Kikuchi E, Oya M. Human castration resistant prostate cancer rather prefer to decreased 5alpha-reductase activity. Sci Rep. 2013;3:1268.23429215
  • Ezzi AAE, Baker MT, Zaidan WR, Hraiki KM, Saidi MAE, Kuddus RH. Association of polymorphisms in the VDR, CYP17 and SRD5A2 genes and prostate cancer among lebanese men. Asian Pac J Cancer Prev. 2017;18(1):93–100. doi:10.22034/APJCP.2017.18.1.9328240015
  • Kraft P, Pharoah P, Chanock SJ, et al. Genetic variation in the HSD17B1 gene and risk of prostate cancer. PLoS Genet. 2005;1(5):e68.16311626
  • Han JH, Lee YS, Kim HJ, Lee SY, Myung SC. Association between cytochrome CYP17A1, CYP3A4, and CYP3A43 polymorphisms and prostate cancer risk and aggressiveness in a Korean study population. Asian J Androl. 2015;17(2):285–291. doi:10.4103/1008-682X.13332025337833
  • Risio M, Venesio T, Kolomoets E, et al. Genetic polymorphisms of CYP17A1, vitamin D receptor and androgen receptor in Italian heredo-familial and sporadic prostate cancers. Cancer Epidemiol. 2011;35(4):e18–e24. doi:10.1016/j.canep.2010.10.00321094112
  • Salvi S, Casadio V, Burgio SL, et al. CYP17A1 polymorphisms and clinical outcome of castration-resistant prostate cancer patients treated with abiraterone. Int J Biol Markers. 2016;31(3):e264–e269. doi:10.5301/jbm.500019726954071
  • Kanda S, Tsuchiya N, Narita S, et al. Effects of functional genetic polymorphisms in the CYP19A1 gene on prostate cancer risk and survival. Int J Cancer. 2015;136(1):74–82. doi:10.1002/ijc.2895224803183
  • Zhenfei L, Bishop AC, Mohammad A, et al. Conversion of abiraterone to D4A drives anti-tumour activity in prostate cancer. Nature. 2015;523(7560):347–351. doi:10.1038/nature1440626030522
  • Akhtar MK, Kelly SL, Kaderbhai MA. Cytochrome b5 modulation of 17α hydroxylase and 17–20 lyase (CYP17) activities in steroidogenesis. J Endocrinol. 2005;187(2):267–274. doi:10.1677/joe.1.0637516293774
  • Davis SM, Squires EJ. Association of cytochrome b5 with 16-androstene steroid synthesis in the testis and accumulation in the fat of male pigs. J Anim Sci. 1999;77(5):1230–1235. doi:10.2527/1999.7751230x10340591
  • Attard G, Reid AH, Olmos D, de Bono JS. Antitumor activity with CYP17 blockade indicates that castration-resistant prostate cancer frequently remains hormone driven. Cancer Res. 2009;69(12):4937–4940. doi:10.1158/0008-5472.CAN-08-453119509232
  • Wang F, Zou YF, Feng XL, Su H, Huang F. CYP17 gene polymorphisms and prostate cancer risk: a meta-analysis based on 38 independent studies. Prostate. 2011;71(11):1167–1177. doi:10.1002/pros.2133221656827
  • Mostaghel EA, Marck BT, Plymate SR, et al. Resistance to CYP17A1 inhibition with abiraterone in castration-resistant prostate cancer: induction of steroidogenesis and androgen receptor splice variants. Clin Cancer Res. 2011;17(18):5913–5925. doi:10.1158/1078-0432.CCR-11-072821807635
  • Binder M, Zhang BY, Hillman DW, et al. Common genetic variation in CYP17A1 and response to abiraterone acetate in patients with metastatic castration-resistant prostate cancer. Int J Mol Sci. 2016;17(7):1097.
  • Wright JL, Kwon EM, Lin DW, et al. CYP17 polymorphisms and prostate cancer outcomes. Prostate. 2010;70(10):1094–1101. doi:10.1002/pros.2114320503394
  • Stark K, Schmidt M, Rovenský J, Blažičková S, Lowin T, Straub RH. Influence of CYB5A gene variants on risk of rheumatoid arthritis and local endocrine function in the joint. Brain Behav Immun. 2013;29:S12–S13.
  • Stark K, Straub RH, Rovenský J, Blažičková S, Eiselt G, Schmidt M. CYB5A polymorphism increases androgens and reduces risk of rheumatoid arthritis in women. Arthritis Res Ther. 2015;17(1):1–11. doi:10.1186/s13075-014-0514-025566937
  • Livak KJ. Allelic discrimination using fluorogenic probes and the 5ʹ nuclease assay. Genet Anal. 1999;14(5–6):143–149. doi:10.1016/s1050-3862(98)00019-910084106
  • Scher HI, Halabi S, Tannock I, et al. Design and end points of clinical trials for patients with progressive prostate cancer and castrate levels of testosterone: recommendations of the prostate cancer clinical trials working group. J Clin Oncol. 2008;26(7):1148–1159. doi:10.1200/JCO.2007.12.448718309951
  • Miller WL, Auchus RJ. The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders. Endocr Rev. 2011;32(1):81–151. doi:10.1210/er.2010-001321051590
  • Billen MJ, Squires EJ. The role of porcine cytochrome b5A and cytochrome b5B in the regulation of cytochrome P45017A1 activities. J Steroid Biochem Mol Biol. 2009;113(1–2):98–104. doi:10.1016/j.jsbmb.2008.11.01219101629
  • Idkowiak J, Randell T, Dhir V, et al. A missense mutation in the human cytochrome b5 gene causes 46,XY disorder of sex development due to true isolated 17,20 lyase deficiency. J Clin Endocrinol Metab. 2012;97(3):E465–E475. doi:10.1210/jc.2011-241322170710
  • Severi G, Hayes VM, Tesoriero AA, et al. The rs743572 common variant in the promoter of CYP17A1 is not associated with prostate cancer risk or circulating hormonal levels. BJU Int. 2008;101(4):492–496. doi:10.1111/j.1464-410X.2007.07272.x17986287
  • Han QH, Shan ZJ, Hu JT, Zhang N, Zhang XP. Relationship between gene polymorphisms and prostate cancer risk. Asian Pac J Trop Med. 2015;8(7):569–573. doi:10.1016/j.apjtm.2015.06.00526276290
  • Setiawan VW, Schumacher FR, Haiman CA, et al. CYP17 genetic variation and risk of breast and prostate cancer from the national cancer institute breast and prostate cancer cohort consortium (BPC3). Cancer Epidemiol Biomarkers Prev. 2007;16(11):2237–2246. doi:10.1158/1055-9965.EPI-07-058918006912
  • Sarma AV, Dunn RL, Lange LA, et al. Genetic polymorphisms in CYP17, CYP3A4, CYP19A1, SRD5A2, IGF-1, and IGFBP-3 and prostate cancer risk in African-American men: the flint men’s health study. Prostate. 2008;68(3):296–305. doi:10.1002/pros.2069618163429
  • Ntais C, Polycarpou A, Ioannidis JP. Association of the CYP17 gene polymorphism with the risk of prostate cancer: a meta-analysis. Cancer Epidemiol Biomarkers Prev. 2003;12(2):120–126.12582021
  • Taioli E, Sears V, Watson A, et al. Polymorphisms in CYP17 and CYP3A4 and prostate cancer in men of African descent. Prostate. 2013;73(6):668–676. doi:10.1002/pros.2261223129512
  • Yamada T, Nakayama M, Shimizu T, et al. Genetic polymorphisms of CYP17A1 in steroidogenesis pathway are associated with risk of progression to castration-resistant prostate cancer in Japanese men receiving androgen deprivation therapy. Int J Clin Oncol. 2013;18(4):711–717. doi:10.1007/s10147-012-0430-822714708
  • Yoshimoto FK, Auchus RJ. The diverse chemistry of cytochrome P450 17A1 (P450c17, CYP17A1). J Steroid Biochem Mol Biol. 2015;151:52–65. doi:10.1016/j.jsbmb.2014.11.02625482340
  • Squires EJ, Gray MA, Lou Y. Effect of mutations in porcine CYB5A and CYP17A1 on the metabolism of pregnenolone. J Steroid Biochem Mol Biol. 2019;195:105469.31509771
  • Barnard M, Mostaghel EA, Auchus RJ, Storbeck KH. The role of adrenal derived androgens in castration resistant prostate cancer. J Steroid Biochem Mol Biol. 2020;197:105506.31672619
  • Peacock J, Lou Y, Lundström K, Squires EJ. The effect of a c.-8G>T polymorphism on the expression of cytochrome b5A and boar taint in pigs. Anim Genet. 2008;39(1):15–21. doi:10.1111/j.1365-2052.2007.01674.x18162105