172
Views
5
CrossRef citations to date
0
Altmetric
Original Research

Carvedilol Alters Circulating MiR-1 and MiR-214 in Heart Failure

, ORCID Icon, ORCID Icon, & ORCID Icon
Pages 375-383 | Published online: 03 Sep 2020

References

  • Chiong M, Wang Z, Pedrozo Z, et al. Cardiomyocyte death: mechanisms and translational implications. Cell Death Dis. 2011;2(12):e244. doi:10.1038/cddis.2011.13022190003
  • Wong LL, Wang J, Liew OW, Richards AM, Chen Y-T. MicroRNA and heart failure. Int J Mol Sci. 2016;17(4):502. doi:10.3390/ijms1704050227058529
  • Ponikowski P, Anker SD, AlHabib KF, et al. Heart failure: preventing disease and death worldwide. ESC Heart Failure. 2014;1(1):4–25. doi:10.1002/ehf2.1200528834669
  • Al-Shamiri MQ. Heart failure in the Middle East. Curr Cardiol Rev. 2013;9(2):174–178. doi:10.2174/1573403X1130902000923597300
  • Montgomery RL, Hullinger TG, Semus HM, et al. Therapeutic inhibition of miR-208a improves cardiac function and survival during heart failure. Circulation. 2011;124(14):1537–1547. doi:10.1161/CIRCULATIONAHA.111.03093221900086
  • Spudich JA. Hypertrophic and dilated cardiomyopathy: four decades of basic research on muscle lead to potential therapeutic approaches to these devastating genetic diseases. Biophys J. 2014;106(6):1236–1249. doi:10.1016/j.bpj.2014.02.01124655499
  • Waagstein F, Hjalmarson Å, Varnauskas E, Wallentin I. Effect of chronic beta-adrenergic receptor blockade in congestive cardiomyopathy. Heart. 1975;37(10):1022–1036. doi:10.1136/hrt.37.10.1022
  • Chatterjee S, Biondi-Zoccai G, Abbate A, et al. Benefits of β blockers in patients with heart failure and reduced ejection fraction: network meta-analysis. BMJ. 2013;346:f55. doi:10.1136/bmj.f5523325883
  • Cadrin-Tourigny J, Shohoudi A, Roy D, et al. Decreased mortality with beta-blockers in patients with heart failure and coexisting atrial fibrillation: an AF-CHF substudy. JACC Heart Fail. 2017;5(2):99–106. doi:10.1016/j.jchf.2016.10.01528089316
  • Kotecha D, Flather MD, Altman DG, et al. Heart rate and rhythm and the benefit of beta-blockers in patients with heart failure. J Am Coll Cardiol. 2017;69(24):2885–2896. doi:10.1016/j.jacc.2017.04.00128467883
  • Chen J, Huang C, Zhang B, Huang Q, Chen J, Xu L. The effects of carvedilol on cardiac structural remodeling: the role of endogenous nitric oxide in the activity of carvedilol. Mol Med Rep. 2013;7(4):1155–1158. doi:10.3892/mmr.2013.132923426852
  • Ruffolo RR, Feuerstein GZ. Carvedilol case history: the discovery and development of the first β-blocker for the treatment of congestive heart failure. Expert Opin Drug Discov. 2006;1(1):85–89. doi:10.1517/17460441.1.1.8523506034
  • Van Rooij E, Olson EN. MicroRNA therapeutics for cardiovascular disease: opportunities and obstacles. Nat Rev Drug Discov. 2012;11(11):860. doi:10.1038/nrd386423080337
  • Duggal B, Gupta M, Naga Prasad S. Potential role of microRNAs in cardiovascular disease: are they up to their hype? Curr Cardiol Rev. 2016;12(4):304–310. doi:10.2174/1573403X1266616030112064226926293
  • Fichtlscherer S, De Rosa S, Fox H, et al. Circulating microRNAs in patients with coronary artery diseasenovelty and significance. Circ Res. 2010;107(5):677–684. doi:10.1161/CIRCRESAHA.109.21556620595655
  • Yan H, Ma F, Zhang Y, et al. miRNAs as biomarkers for diagnosis of heart failure: a systematic review and meta-analysis. Medicine. 2017;96:22. doi:10.1097/MD.0000000000006825
  • Divakaran V, Mann DL. The emerging role of microRNAs in cardiac remodeling and heart failure. Circ Res. 2008;103(10):1072–1083. doi:10.1161/CIRCRESAHA.108.18308718988904
  • Topkara VK, Mann DL. Clinical applications of miRNAs in cardiac remodeling and heart failure. Per Med. 2010;7(5):531–548. doi:10.2217/pme.10.4421399714
  • Ramasamy S, Velmurugan G, Rajan KS, Ramprasath T, Kalpana K. MiRNAs with apoptosis regulating potential are differentially expressed in chronic exercise-induced physiologically hypertrophied hearts. PLoS One. 2015;10(3):e0121401. doi:10.1371/journal.pone.012140125793527
  • Park K-M, Teoh J-P, Wang Y, et al. Carvedilol-responsive microRNAs, miR-199a-3p and-214 protect cardiomyocytes from simulated ischemia-reperfusion injury. Am J Physiol Heart Circulatory Physiol. 2016;311(2):H371–H383. doi:10.1152/ajpheart.00807.2015
  • Lv L, Li T, Li X, et al. The lncRNA Plscr4 controls cardiac hypertrophy by regulating miR-214. Mol Ther Nucl Acids. 2018;10:387–397. doi:10.1016/j.omtn.2017.12.018
  • Yang X, Qin Y, Shao S, et al. MicroRNA-214 inhibits left ventricular remodeling in an acute myocardial infarction rat model by suppressing cellular apoptosis via the phosphatase and tensin homolog (PTEN). Int Heart J. 2016;57(2):247–250. doi:10.1536/ihj.15-29326973267
  • Care A, Catalucci D, Felicetti F, et al. MicroRNA-133 controls cardiac hypertrophy. Nat Med. 2007;13(5):613–618. doi:10.1038/nm158217468766
  • Xiao J, Chen Y-H. MicroRNAs: novel regulators of the heart. J Thorac Dis. 2010;2(1):43.22263016
  • Wang N, Zhou Z, Liao X, Zhang T. Role of microRNAs in cardiac hypertrophy and heart failure. IUBMB Life. 2009;61(6):566–571. doi:10.1002/iub.20419472179
  • Vegter EL, van der Meer P, de Windt LJ, Pinto YM, Voors AA. MicroRNAs in heart failure: from biomarker to target for therapy. Eur J Heart Fail. 2016;18(5):457–468. doi:10.1002/ejhf.49526869172
  • Babiarz JE, Ravon M, Sridhar S, et al. Determination of the human cardiomyocyte mRNA and miRNA differentiation network by fine-scale profiling. Stem Cells Dev. 2012;21(11):1956–1965. doi:10.1089/scd.2011.035722050602
  • Zhou Q, Schötterl S, Backes D, et al. Inhibition of miR-208b improves cardiac function in titin-based dilated cardiomyopathy. Int J Cardiol. 2017;230:634–641. doi:10.1016/j.ijcard.2016.12.17128065693
  • Duan Q, Yang L, Gong W, et al. MicroRNA‐214 is upregulated in heart failure patients and suppresses XBP1‐mediated endothelial cells angiogenesis. J Cell Physiol. 2015;230(8):1964–1973. doi:10.1002/jcp.2494225656649
  • Tang C-M, Liu F-Z, Zhu J-N, et al. Myocyte-specific enhancer factor 2C: a novel target gene of miR-214-3p in suppressing angiotensin II-induced cardiomyocyte hypertrophy. Sci Rep. 2016;6:36146. doi:10.1038/srep3614627796324
  • Barone FC, Willette RN, Nelson AH, Ohlstein EH, Brooks DP, Coatney RW. Carvedilol prevents and reverses hypertrophy-induced cardiac dysfunction. Pharmacology. 2007;80(2–3):166–176. doi:10.1159/00010338417551266
  • Xu C, Hu Y, Hou L, et al. β-Blocker carvedilol protects cardiomyocytes against oxidative stress-induced apoptosis by up-regulating miR-133 expression. J Mol Cell Cardiol. 2014;75:111–121. doi:10.1016/j.yjmcc.2014.07.00925066695
  • Filipowicz W, Bhattacharyya SN, Sonenberg N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet. 2008;9(2):102–114. doi:10.1038/nrg229018197166
  • Almeida MI, Reis RM, Calin GA. MicroRNA history: discovery, recent applications, and next frontiers. Mut Res Fund Mol Mech Mutagenesis. 2011;717(1–2):1–8. doi:10.1016/j.mrfmmm.2011.03.009
  • Investigators C-I. The cardiac insufficiency bisoprolol study II (CIBIS-II). Lancet. 1999;353:9–13.10023943
  • Group M-HS. Effect of metoprolol CR/XL in chronic heart failure: metoprolol CR/XL randomised intervention trial in-congestive heart failure (MERIT-HF). The Lancet. 1999;353(9169):2001–2007. doi:10.1016/S0140-6736(99)04440-2
  • Packer M, Coats AJ, Fowler MB, et al. Effect of carvedilol on survival in severe chronic heart failure. N Engl J Med. 2001;344(22):1651–1658. doi:10.1056/NEJM20010531344220111386263
  • Poole-Wilson PA, Swedberg K, Cleland JG, et al. Comparison of carvedilol and metoprolol on clinical outcomes in patients with chronic heart failure in the Carvedilol Or Metoprolol European Trial (COMET): randomised controlled trial. The Lancet. 2003;362(9377):7–13. doi:10.1016/S0140-6736(03)13800-7
  • Zhu S, Han Z, Luo Y, et al. Molecular mechanisms of heart failure: insights from Drosophila. Heart Fail Rev. 2017;22(1):91–98. doi:10.1007/s10741-016-9590-327904993
  • Ottaviani L, da Costa Martins PA. Non‐coding RNAs in cardiac hypertrophy. J Physiol. 2017;595(12):4037–4050. doi:10.1113/JP27312928233323
  • Leimena C, Qiu H. Non-Coding RNA in the pathogenesis, progression and treatment of hypertension. Int J Mol Sci. 2018;19(4):927.
  • Topkara VK, Mann DL. Role of microRNAs in cardiac remodeling and heart failure. Cardiovasc Drugs Ther. 2011;25(2):171–182. doi:10.1007/s10557-011-6289-521431305
  • Da Costa Martins PA, De Windt LJ. MicroRNAs in control of cardiac hypertrophy. Cardiovasc Res. 2012;93(4):563–572. doi:10.1093/cvr/cvs01322266752
  • Seronde M-F, Vausort M, Gayat E, et al. Circulating microRNAs and outcome in patients with acute heart failure. PLoS One. 2015;10(11):e0142237. doi:10.1371/journal.pone.014223726580972
  • Burchfield JS, Xie M, Hill JA. Pathological ventricular remodeling: mechanisms: part 1 of 2. Circulation. 2013;128(4):388–400. doi:10.1161/CIRCULATIONAHA.113.00187823877061
  • Aurora AB, Mahmoud AI, Luo X, et al. MicroRNA-214 protects the mouse heart from ischemic injury by controlling Ca 2+ overload and cell death. J Clin Invest. 2012;122:4. doi:10.1172/JCI5932722214853
  • Lu H-Q, Liang C, He Z-Q, Fan M, Wu Z-G. Circulating miR-214 is associated with the severity of coronary artery disease. J Geriatric Cardiol. 2013;10(1):34.
  • Abbate A, Biondi-Zoccai GG, Bussani R, et al. Increased myocardial apoptosis in patients with unfavorable left ventricular remodeling and early symptomatic post-infarction heart failure. J Am Coll Cardiol. 2003;41(5):753–760. doi:10.1016/S0735-1097(02)02959-512628718
  • Cheng AM, Byrom MW, Shelton J, Ford LP. Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nucleic Acids Res. 2005;33(4):1290–1297. doi:10.1093/nar/gki20015741182
  • Lv G, Shao S, Dong H, Bian X, Yang X, Dong S. MicroRNA‐214 protects cardiac myocytes against H2O2‐induced injury. J Cell Biochem. 2014;115(1):93–101. doi:10.1002/jcb.2463623904244
  • Penna E, Orso F, Taverna D. miR-214 as a key hub that controls cancer networks: small player, multiple functions. J Invest Dermatol. 2015;135(4):960–969. doi:10.1038/jid.2014.47925501033
  • Yang T, Gu H, Chen X, et al. Cardiac hypertrophy and dysfunction induced by overexpression of miR-214 in vivo. J Surg Res. 2014;192(2):317–325. doi:10.1016/j.jss.2014.06.04425085702
  • Wu Y, Li Z, Yang M, et al. MicroRNA-214 regulates smooth muscle cell differentiation from stem cells by targeting RNA-binding protein QKI. Oncotarget. 2017;8(12):19866. doi:10.18632/oncotarget.1518928186995
  • Dong D-L, Yang B-F. Role of microRNAs in cardiac hypertrophy, myocardial fibrosis and heart failure. Acta Pharm Sin B. 2011;1(1):1–7. doi:10.1016/j.apsb.2011.04.010
  • Fu S, Zhuo R, Yao M, Zhang J, Zhou H, Xiao J. MicroRNA basis of physiological hypertrophy. Front Genet. 2013;4:253. doi:10.3389/fgene.2013.0025324324482
  • Sayed D, Hong C, Chen I-Y, Lypowy J, Abdellatif M. MicroRNAs play an essential role in the development of cardiac hypertrophy. Circ Res. 2007;100(3):416–424. doi:10.1161/01.RES.0000257913.42552.2317234972
  • Elia L, Contu R, Quintavalle M, et al. Reciprocal regulation of microRNA-1 and insulin-like growth factor-1 signal transduction cascade in cardiac and skeletal muscle in physiological and pathological conditions. Circulation. 2009;120(23):2377–2385. doi:10.1161/CIRCULATIONAHA.109.87942919933931
  • YUAN X-Z, ZHANG Q-H, JIANG Z-X, Shah GD-L. Effects of carvedilol on the intimal proliferation and expression of insulin-like growth factor-1 in rats with vascular injury. Shandong Med J. 2010;7:019.
  • Hu Y, Chen X, Li X, et al. MicroRNA‑1 downregulation induced by carvedilol protects cardiomyocytes against apoptosis by targeting heat shock protein 60. Mol Med Rep. 2019;19(5):3527–3536. doi:10.3892/mmr.2019.1003430896796
  • Latronico MV, Condorelli G. microRNAs in hypertrophy and heart failure. Exp Biol Med. 2011;236(2):125–131. doi:10.1258/ebm.2010.010269
  • Zhu H, Fan G-C. Role of microRNAs in the reperfused myocardium towards post-infarct remodelling. Cardiovasc Res. 2011;94(2):284–292. doi:10.1093/cvr/cvr29122038740
  • Nakao K, Minobe W, Roden R, Bristow MR, Leinwand LA. Myosin heavy chain gene expression in human heart failure. J Clin Invest. 1997;100(9):2362–2370. doi:10.1172/JCI1197769410916
  • Van Rooij E, Olson EN. MicroRNAs: powerful new regulators of heart disease and provocative therapeutic targets. J Clin Invest. 2007;117(9):2369–2376. doi:10.1172/JCI3309917786230