137
Views
1
CrossRef citations to date
0
Altmetric
Original Research

SLCO1B1 and ABCG2 Gene Polymorphisms in a Thai Population

ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, , ORCID Icon, , ORCID Icon & ORCID Icon show all
Pages 521-530 | Published online: 22 Oct 2020

References

  • Mizuno N, Sugiyama Y. Drug transporters: their role and importance in the selection and development of new drugs. Drug Metab Pharmacokinet. 2002;17(2):93–108. doi:10.2133/dmpk.17.9315618657
  • Shugarts S, Benet LZ. The role of transporters in the pharmacokinetics of orally administered drugs. Pharm Res. 2009;26(9):2039–2054.19568696
  • Keogh J, Hagenbuch B, Rynn C, Stieger B, Nicholls G. Chapter 1 membrane transporters: fundamentals, function and their role in ADME In: Nicholls G, Youdim K, editors. Drug Transporters: Volume 1: Role and Importance in ADME and Drug Development. 1st ed. London: The Royal Society of Chemistry; 2016:1–56.
  • Franke RM, Gardner ER, Sparreboom A. Pharmacogenetics of Drug Transporters. Curr Pharm Des. 2010;16(2):220–230. doi:10.2174/13816121079011268319835554
  • Kalliokoski A, Niemi M. Impact of OATP transporters on pharmacokinetics. Br J Pharmacol. 2009;158(3):693–705. doi:10.1111/j.1476-5381.2009.00430.x19785645
  • Stieger B, Hagenbuch B. Chapter five - organic anion-transporting polypeptides In: Bevensee MO, editor. Current Topics in Membranes. Vol. 73 Academic Press; 2014:205–232.24745984
  • Birmingham BK, Bujac SR, Elsby R, et al. Impact of ABCG2 and SLCO1B1 polymorphisms on pharmacokinetics of rosuvastatin, atorvastatin and simvastatin acid in caucasian and asian subjects: a class effect? Eur J Clin Pharmacol. 2015;71(3):341–355. doi:10.1007/s00228-014-1801-z25673568
  • Pasanen MK, Fredrikson H, Neuvonen PJ, Niemi M. Different effects of SLCO1B1 polymorphism on the pharmacokinetics of atorvastatin and rosuvastatin. Clin Pharmacol Ther. 2007;82(6):726–733. doi:10.1038/sj.clpt.610022017473846
  • Romaine SP, Bailey KM, Hall AS, Balmforth AJ. The influence of SLCO1B1 (OATP1B1) gene polymorphisms on response to statin therapy. Pharmacogenomics J. 2010;10(1):1–11. doi:10.1038/tpj.2009.5419884908
  • Keskitalo JE, Zolk O, Fromm MF, Kurkinen KJ, Neuvonen PJ, Niemi M. ABCG2 polymorphism markedly affects the pharmacokinetics of atorvastatin and rosuvastatin. Clin Pharmacol Ther. 2009;86(2):197–203. doi:10.1038/clpt.2009.7919474787
  • Ramsey LB, Johnson SG, Caudle KE, et al. The clinical pharmacogenetics implementation consortium guideline for SLCO1B1 and simvastatin-induced myopathy: 2014 update. Clin Pharmacol Ther. 2014;96(4):423–428. doi:10.1038/clpt.2014.12524918167
  • Cleophas MC, Joosten LA, Stamp LK, Dalbeth N, Woodward OM, Merriman TR. ABCG2 polymorphisms in gout: insights into disease susceptibility and treatment approaches. Pharmgenomics Pers Med. 2017;10:129–142.28461764
  • Yang GP, Yuan H, Tang B, et al. Lack of effect of genetic polymorphisms of SLCO1B1 on the lipid-lowering response to pitavastatin in Chinese patients. Acta Pharmacol Sin. 2010;31(3):382–386. doi:10.1038/aps.2009.20320140004
  • Choi JH, Lee MG, Cho JY, Lee JE, Kim KH, Park K. Influence of OATP1B1 genotype on the pharmacokinetics of rosuvastatin in Koreans. Clin Pharmacol Ther. 2008;83(2):251–257. doi:10.1038/sj.clpt.610026717568401
  • Nishizato Y, Ieiri I, Suzuki H, et al. Polymorphisms of OATP-C (SLC21A6) and OAT3 (SLC22A8) genes: consequences for pravastatin pharmacokinetics. Clin Pharmacol Ther. 2003;73(6):554–565. doi:10.1016/S0009-9236(03)00060-212811365
  • Pasanen MK, Backman JT, Neuvonen PJ, Niemi M. Frequencies of single nucleotide polymorphisms and haplotypes of organic anion transporting polypeptide 1B1 SLCO1B1 gene in a Finnish population. Eur J Clin Pharmacol. 2006;62(6):409–415. doi:10.1007/s00228-006-0123-116758257
  • De Jong FA, Marsh S, Mathijssen RH, et al. ABCG2 pharmacogenetics: ethnic differences in allele frequency and assessment of influence on irinotecan disposition. Clin Cancer Res. 2004;10(17):5889–5894. doi:10.1158/1078-0432.CCR-04-014415355921
  • Kim KA, Joo HJ, Park JY. ABCG2 polymorphisms, 34G>A and 421C>A in a Korean population: analysis and a comprehensive comparison with other populations. J Clin Pharm Ther. 2010;35(6):705–712. doi:10.1111/j.1365-2710.2009.01127.x21054463
  • Imai Y, Nakane M, Kage K, et al. C421A polymorphism in the human breast cancer resistance protein gene is associated with low expression of Q141K protein and low-level drug resistance. Mol Cancer Ther. 2002;1(8):611–616.12479221
  • PharmGKB. SLCO1B1 allele functionality table. Available from: https://www.pharmgkb.org/page/slco1b1RefMaterials. Accessed 929, 2020.
  • Medhasi S, Pasomsub E, Vanwong N, et al. Clinically relevant genetic variants of drug-metabolizing enzyme and transporter genes detected in Thai children and adolescents with autism spectrum disorder. Neuropsychiatr Dis Treat. 2016;12:843–851.27110117
  • Woo HI, Kim SR, Huh W, Ko JW, Lee SY. Association of genetic variations with pharmacokinetics and lipid-lowering response to atorvastatin in healthy Korean subjects. Drug Des Devel Ther. 2017;11:1135–1146. doi:10.2147/DDDT.S131487
  • Yamagishi K, Tanigawa T, Kitamura A, et al. The rs2231142 variant of the ABCG2 gene is associated with uric acid levels and gout among Japanese people. Rheumatology. 2010;49(8):1461–1465. doi:10.1093/rheumatology/keq09620421215
  • National center for biotechnology information. ClinVar; [VCV000037346.4]. Available from: https://www.ncbi.nlm.nih.gov/clinvar/variation/VCV000037346.4. Accessed 929, 2020.
  • National center for biotechnology information. ClinVar; [VCV000259983.4]. Available from: https://www.ncbi.nlm.nih.gov/clinvar/variation/VCV000259983.4. Accessed 929, 2020.
  • National center for biotechnology information. ClinVar; [VCV000225995.1]. Available from: https://www.ncbi.nlm.nih.gov/clinvar/variation/VCV000225995. Accessed 929, 2020.
  • National center for biotechnology information. ClinVar; [VCV000030389.2]. Available from: https://www.ncbi.nlm.nih.gov/clinvar/variation/VCV000030389.2. Accessed 929, 2020.
  • Lee HH, Ho RH. Interindividual and interethnic variability in drug disposition: polymorphisms in organic anion transporting polypeptide 1B1 (OATP1B1; SLCO1B1). Br J Clin Pharmacol. 2017;83(6):1176–1184. doi:10.1111/bcp.1320727936281
  • Pasanen MK, Neuvonen M, Neuvonen PJ, Niemi M. SLCO1B1 polymorphism markedly affects the pharmacokinetics of simvastatin acid. Pharmacogenet Genomics. 2006;16(12):873–879. doi:10.1097/01.fpc.0000230416.82349.9017108811
  • Link E, Parish S, Armitage J, et al. SLCO1B1 variants and statin-induced myopathy–a genomewide study. N Engl J Med. 2008;359(8):789–799.18650507
  • Deng JW, Song IS, Shin HJ, et al. The effect of SLCO1B1*15 on the disposition of pravastatin and pitavastatin is substrate dependent: the contribution of transporting activity changes by SLCO1B1*15. Pharmacogenet Genomics. 2008;18(5):424–433. doi:10.1097/FPC.0b013e3282fb02a318408565
  • Duman I. Role of Pharmacogenetics on Response to Statins: A Genotypebased Approach to Statin Therapy Outcome. J Cardiol Therapy. 2014;1(6):111–120.
  • Lee HK, Hu M, Lui S, Ho CS, Wong CK, Tomlinson B. Effects of polymorphisms in ABCG2, SLCO1B1, SLC10A1 and CYP2C9/19 on plasma concentrations of rosuvastatin and lipid response in Chinese patients. Pharmacogenomics. 2013;14(11):1283–1294. doi:10.2217/pgs.13.11523930675
  • Annotation of Swissmedic Label for rosuvastatin and ABCG2, SLCO1B1. Available from: https://www.pharmgkb.org/labelAnnotation/PA166184499. Accessed 929, 2020.
  • Robey RW, To KK, Polgar O, et al. ABCG2: a perspective. Adv Drug Deliv Rev. 2009;61(1):3–13. doi:10.1016/j.addr.2008.11.00319135109
  • Keskitalo JE, Pasanen MK, Neuvonen PJ, Niemi M. Different effects of the ABCG2 c.421C>A SNP on the pharmacokinetics of fluvastatin, pravastatin and simvastatin. Pharmacogenomics. 2009;10(10):1617–1624. doi:10.2217/pgs.09.8519842935
  • Ichida K, Matsuo H, Takada T, et al. Decreased extra-renal urate excretion is a common cause of hyperuricemia. Nat Commun. 2012;3:764. doi:10.1038/ncomms175622473008
  • Woodward OM, Köttgen A, Coresh J, Boerwinkle E, Guggino WB, Köttgen M. Identification of a urate transporter, ABCG2, with a common functional polymorphism causing gout. Proc Natl Acad Sci U S A. 2009;106(25):10338–10342. doi:10.1073/pnas.090124910619506252
  • Toyoda Y, Pavelcová K, Klein M, Suzuki H, Takada T, Stiburkova B. Familial early-onset hyperuricemia and gout associated with a newly identified dysfunctional variant in urate transporter ABCG2. Arthritis Res Ther. 2019;21(1):219. doi:10.1186/s13075-019-2007-731661014
  • Stiburkova B, Pavelcova K, Pavlikova M, Ješina P, Pavelka K. The impact of dysfunctional variants of ABCG2 on hyperuricemia and gout in pediatric-onset patients. Arthritis Res Ther. 2019;21(1):77. doi:10.1186/s13075-019-1860-830894219
  • Roberts RL, Wallace MC, Phipps-Green AJ, et al. ABCG2 loss-of-function polymorphism predicts poor response to allopurinol in patients with gout. Pharmacogenomics J. 2017;17(2):201–203. doi:10.1038/tpj.2015.10126810134
  • Wallace MC, Roberts RL, Nanavati P, et al. Association between ABCG2 rs2231142 and poor response to allopurinol: replication and meta-analysis. Rheumatology (Oxford). 2018;57(4):656–660. doi:10.1093/rheumatology/kex46729342288
  • Becker MA, Schumacher HR, Espinoza LR, et al. The urate-lowering efficacy and safety of febuxostat in the treatment of the hyperuricemia of gout: the CONFIRMS trial. Arthritis Res Ther. 2010;12(2):R63. doi:10.1186/ar297820370912
  • Li B, Leal SM. Deviations from Hardy-Weinberg equilibrium in parental and unaffected sibling genotype data. Hum Hered. 2009;67(2):104–115. doi:10.1159/00017955819077427
  • Chamnanphon M, Gaedigk A, Puangpetch A, et al. Pharmacogene variation in thai plasmodium vivax relapse patients treated with a combination of primaquine and chloroquine. Pharmgenomics Pers Med. 2020;13:1–12.32021383
  • Thompson JF, Man M, Johnson KJ, et al. An association study of 43 SNPs in 16 candidate genes with atorvastatin response. Pharmacogenomics J. 2005;5(6):352–358. doi:10.1038/sj.tpj.650032816103896