166
Views
3
CrossRef citations to date
0
Altmetric
Original Research

Influence of PSRC1, CELSR2, and SORT1 Gene Polymorphisms on the Variability of Warfarin Dosage and Susceptibility to Cardiovascular Disease

ORCID Icon, , , , ORCID Icon & ORCID Icon
Pages 619-632 | Published online: 17 Nov 2020

References

  • Arvind P, Nair J, Jambunathan S, et al. CELSR2–PSRC1–SORT1 gene expression and association with coronary artery disease and plasma lipid levels in an Asian Indian cohort. J Cardiol. 2014;64(5):339–346. doi:10.1016/j.jjcc.2014.02.01224674750
  • Below JE, Parra EJ, Gamazon ER, et al. Meta-analysis of lipid-traits in Hispanics identifies novel loci, population-specific effects and tissue-specific enrichment of eQTLs. Sci Rep. 2016;6(1):19429. doi:10.1038/srep1942926780889
  • Kjolby M, Andersen OM, Breiderhoff T, et al. Sort1, Encoded by the Cardiovascular Risk Locus 1p13.3, Is a Regulator of Hepatic Lipoprotein Export. Cell Metab. 2010;12(3):213–223. doi:10.1016/j.cmet.2010.08.00620816088
  • Zhou L, Ding H, Zhang X, et al. Genetic Variants at Newly Identified Lipid Loci Are Associated with Coronary Heart Disease in a Chinese Han Population. PLoS One. 2011;6(11):e27481. doi:10.1371/journal.pone.002748122110658
  • Deloukas P, Kanoni S, Willenborg C, et al. Large-scale association analysis identifies new risk loci for coronary artery disease. Nat Genet. 2013;45(1):25–33. doi:10.1038/ng.248023202125
  • Rizk NM, El-Menyar A, Egue H, et al. The Association between Serum LDL Cholesterol and Genetic Variation in Chromosomal Locus 1p13.3 among Coronary Artery Disease Patients. Biomed Res Int. 2015;2015:1–12. doi:10.1155/2015/678924
  • Qin J, Tian J, Liu G, et al. Association between 1p13 polymorphisms and peripheral arterial disease in a Chinese population with diabetes. J Diabetes Investig. 2018;9(5):1189–1195.
  • Robinson JR, Denny JC, Roden DM, et al. Genome-wide and Phenome-wide Approaches to Understand Variable Drug Actions in Electronic Health Records. Clin Transl Sci. 2018;11(2):112–122. doi:10.1111/cts.1252229148204
  • Holdt LM, Teupser D. From genotype to phenotype in human atherosclerosis - recent findings. Curr Opin Lipidol. 2013;24(5):410–418. doi:10.1097/MOL.0b013e3283654e7c24005217
  • Guo K, Hu L, Xi D, et al. PSRC1 overexpression attenuates atherosclerosis progression in apoE −/− mice by modulating cholesterol transportation and inflammation. J Mol Cell Cardiol. 2018;116:69–80. doi:10.1016/j.yjmcc.2018.01.01329378206
  • Goettsch C, Kjolby M, Sortilin AE. Its Multiple Roles in Cardiovascular and Metabolic Diseases. Arterioscler Thromb Vasc Biol. 2018;38(1):19–25. doi:10.1161/ATVBAHA.117.31029229191923
  • Kjolby M, Nielsen MS, Petersen CM. Sortilin, Encoded by the Cardiovascular Risk Gene SORT1, and Its Suggested Functions in Cardiovascular Disease. Curr Atheroscler Rep. 2015;17(4):18.
  • Pankow JS, Tang W, Pankratz N, et al. Identification of Genetic Variants Linking Protein C and Lipoprotein metabolism: the ARIC study (Atherosclerosis Risk in Communities). Arterioscler Thromb Vasc Biol. 2017;37(3):589–597. doi:10.1161/ATVBAHA.116.30810928082259
  • Al-Eitan LN, Almasri AY, Khasawneh RH. Effects of CYP2C9 and VKORC1 polymorphisms on warfarin sensitivity and responsiveness during the stabilization phase of therapy. Saudi Pharm J. 2019;27(4):484–490. doi:10.1016/j.jsps.2019.01.01131061616
  • Al-Eitan L, Almasri A, Khasawneh R. Impact of CYP2C9 and VKORC1 Polymorphisms on Warfarin Sensitivity and Responsiveness in Jordanian Cardiovascular Patients during the Initiation Therapy. Genes. 2018;9(12):578. doi:10.3390/genes9120578
  • Emery JD. Pharmacogenomic testing and warfarin: what evidence has the GIFT trial provided? JAMA. 2017;318(12):1110–1112. doi:10.1001/jama.2017.1146528973596
  • Fawzy AM, Lip GY. Pharmacokinetics and pharmacodynamics of oral anticoagulants used in atrial fibrillation. Expert Opin Drug Metab Toxicol. 2019;15(5):381–398. doi:10.1080/17425255.2019.160468630951640
  • Johnson JA, Cavallari LH. Warfarin pharmacogenetics. Trends Cardiovasc Med. 2015;25(1):33–41. doi:10.1016/j.tcm.2014.09.00125282448
  • Kasner SE, Wang L, French B, et al. Warfarin Dosing Algorithms and the Need for Human Intervention. Am J Med. 2016;129(4):431–437. doi:10.1016/j.amjmed.2015.11.01226642907
  • Cavallari LH. Time to revisit warfarin pharmacogenetics. Future Cardiol. 2017;13(6):511–513. doi:10.2217/fca-2017-006128967279
  • Consortium IWP. Estimation of the warfarin dose with clinical and pharmacogenetic data. N Eng J Med. 2009;360(8):753–764.
  • Higashi MK, Veenstra DL, Kondo LM, et al. Association between CYP2C9 genetic variants and anticoagulation-related outcomes during warfarin therapy. JAMA. 2002;287(13):1690–1698. doi:10.1001/jama.287.13.169011926893
  • Al-Eitan LN, Almasri AY, Al-Habahbeh SO. Effects of coagulation factor VII polymorphisms on warfarin sensitivity and responsiveness in Jordanian cardiovascular patients during the initiation and maintenance phases of warfarin therapy. Pharmgenomics Pers Med. 2019;Volume 12:1–8. doi:10.2147/PGPM.S189458
  • Large-Scale Association MN. Analysis Identifies 13 New Susceptibility Loci for Coronary Artery Disease. Circ Cardiovasc Genet. 2011;4(3):327–329.21673312
  • Samani NJ, Braund PS, Erdmann J, et al. The novel genetic variant predisposing to coronary artery disease in the region of the PSRC1 and CELSR2 genes on chromosome 1 associates with serum cholesterol. J Mol Med. 2008;86(11):1233–1241. doi:10.1007/s00109-008-0387-218649068
  • Zhou Y, Yang Q, Yin R. GW26-e2113 Polymorphisms in the CELSR2-PSRC1-SORT1 are associated with serum lipid traits, the risk of coronary artery disease and ischemic stroke. J Am Coll Cardiol. 2015;66(16):C104–C105. doi:10.1016/j.jacc.2015.06.406
  • Musunuru K, Strong A, Frank-Kamenetsky M, et al. From noncoding variant to phenotype via SORT1 at the 1p13 cholesterol locus. Nature. 2010;466(7307):714–719. doi:10.1038/nature0926620686566
  • O’Donnell CJ, Kavousi M, Smith AV, et al. Genome-Wide Association Study for Coronary Artery Calcification With Follow-Up in Myocardial Infarction. Circulation. 2011;124(25):2855–2864. doi:10.1161/CIRCULATIONAHA.110.97489922144573
  • Ke W, Rand K, Conti D, et al. Evaluation of 71 Coronary Artery Disease Risk Variants in a Multiethnic Cohort. Fron Cardiovasc Med. 2018;5.
  • Al-Eitan L, Haddad Y. Emergence of Pharmacogenomics in Academic Medicine and Public Health in Jordan: history, Present State and Prospects. Curr Pharmacogenomics Person Med. 2014;12(3):167–175. doi:10.2174/1875692113666150115221210
  • Xu H, Xie X, Wang B, et al. Meta-analysis of efficacy and safety of genotype-guided pharmacogenetic dosing of warfarin. Int J Cardiol. 2014;177(2):654–657. doi:10.1016/j.ijcard.2014.09.17425449474
  • Wu AH. Pharmacogenomic-guided dosing for warfarin: too little too late? Per Med. 2018;15(2):71–73. doi:10.2217/pme-2017-008029714120
  • Maluso A. Pharmacogenomic Testing and Warfarin Management. Oncol Nurs Forum. 2015;42(5):563–565. doi:10.1188/15.ONF.563-56526302287
  • Tavares LC, Marcatto LR, Santos PC. Genotype-guided warfarin therapy: current status. Pharmacogenomics. 2018;19(7):667–685. doi:10.2217/pgs-2017-020729701078
  • Cavallari LH, Nutescu EA. Warfarin Pharmacogenetics: to Genotype or Not to Genotype, That Is the Question. Clin Pharmacol Ther. 2014;96(1):22–24. doi:10.1038/clpt.2014.7824942399
  • Johnson J, Caudle K, Gong L, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for Pharmacogenetics-Guided Warfarin Dosing: 2017 Update. Clin Pharmacol Ther. 2017;102(3):397–404.28198005
  • Al-Eitan L, Practical Challenges TA. Translational Issues in Pharmacogenomics and Personalized Medicine from 2010 Onwards. Curr Pharmacogenomics Person Med. 2016;14(1):7–17. doi:10.2174/1875692115666161215103842