123
Views
4
CrossRef citations to date
0
Altmetric
Original Research

Assessment of the Role of Selected SMAD3 and SMAD4 Genes Polymorphisms in the Development of Colorectal Cancer: Preliminary Research

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 167-178 | Published online: 29 Jan 2021

References

  • Kamocki ZK, Wodynska NA, Zurawska JL, Zareba KP. Significance of selected morphological and histopathological parameters of colon tumors as prognostic factors of cancer spread. Turk J Gastroenterol. 2017;28(4):248–253. doi:10.5152/tjg.2017.16734
  • Jacobs D, Zhu R, Luo J, et al. Defining early-onset colon and rectal cancers. Front Oncol. 2018;8:504. doi:10.3389/fonc.2018.00504
  • Sameer AS. Colorectal cancer: molecular mutations and polymorphisms. Front Oncol. 2013;3:114. doi:10.3389/fonc.2013.00114
  • Druliner BR, Ruan X, Sicotte H, et al. Early genetic aberrations in patients with sporadic colorectal cancer. Mol Carcinog. 2018;57(1):114–124. doi:10.1002/mc.22738
  • Wideł MS, Wideł M. Mechanizmy przerzutowania i molekularne markery progresji nowotworów złośliwych. I. Rak jelita grubego. Postepy Hig Med Dosw. 2006;60:453–470.
  • Tian M, Schiemann WP. The TGF-beta paradox in human cancer: an update. Future Oncol. 2009;5:259–271. doi:10.2217/14796694.5.2.259
  • Akhurst RJ, Hata A. Targeting the TGFbeta signalling pathway in disease. Nat Rev Drug Discov. 2012;11:790–811.
  • Attisano L, Wrana JL. Signal transduction by the TGF-beta superfamily. Science. 2002;296:1646–1647. doi:10.1126/science.1071809
  • Slattery ML, Herrick JS, Lundgreen A, Wolff RK. Genetic variation in the TGF-β-signaling pathway and colon and rectal cancer risk. Cancer Epidemiol Biomarkers Prev. 2011;20(1):57–69. doi:10.1158/1055-9965.EPI-10-0843
  • Li Q, Wu H, Chen B, et al. SNPs in the TGF-βsignaling pathway are associated with increased risk of brain metastasis in patients with non-small-cell lung cancer. PLoS One. 2012;7(12):e51713. doi:10.1371/journal.pone.0051713
  • Schmierer B, Hill CS. TGFβ–SMAD signal transduction: molecular specificity and functional flexibility. Nat Rev Mol Cell Biol. 2007;8(12):970. doi:10.1038/nrm2297
  • Slattery ML, Lundgreen A, Herrick JS, et al. Associations between genetic variation in RUNX1, RUNX2, RUNX3, MAPK1 and eIF4E and risk of colon and rectal cancer: additional support for a TGF-β-signaling pathway. Carcinogenesis. 2011;32(3):318–326. doi:10.1093/carcin/bgq245
  • Woodford-Richens KL, Rowan AJ, Gorman P, et al. SMAD4 mutations in colorectal cancer probably occur before chromosomal instability, but after divergence of the microsatellite instability pathway. Proc Natl Acad Sci USA. 2001;98(17):9719–9723. doi:10.1073/pnas.171321498
  • Fleming NI, Jorissen RN, Mouradov D, et al. SMAD2, SMAD3 and SMAD4 mutations in colorectal cancer. Cancer Res. 2013;73(2):725–735. doi:10.1158/0008-5472.CAN-12-2706
  • Du X, Pan Z, Li Q, Liu H, Li Q. SMAD4 feedback regulates the canonical TGF-β signaling pathway to control granulosa cell apoptosis. Cell Death Dis. 2018;9(2):151. doi:10.1038/s41419-017-0205-2
  • Salovaara R, Roth S, Loukola A, et al. Frequent loss of SMAD4/DPC4 protein in colorectal cancers. Gut. 2002;51(1):56–59. doi:10.1136/gut.51.1.56
  • Sarshekeh AM, Advani S, Overman MJ, et al. Association of SMAD4 mutation with patient demographics, tumor characteristics, and clinical outcomes in colorectal cancer. PLoS One. 2017;12(3):e0173345. doi:10.1371/journal.pone.0173345
  • Mithani SK, Balch GC, Shiou S-R, Whitehead RH, Datta PK, Beauchamp RD. Smad3 has a critical role in TGF-β-mediated growth inhibition and apoptosis in colonic epithelial cells. J Surg Res. 2004;117(2):296–305. doi:10.1016/S0022-4804(03)00335-4
  • van de Laar IM, van der Linde D, Oei EH, et al. Phenotypic spectrum of the SMAD3-related aneurysms-osteoarthritis syndrome. J Med Genet. 2012;49:47–57. doi:10.1136/jmedgenet-2011-100382
  • Zhang L, Zhang H, Wang W, Zhao Y. Association between SMAD3 gene rs12901499 polymorphism and knee osteoarthritis in a Chinese population. J Clin Lab Anal. 2018;32:e22383. doi:10.1002/jcla.22383
  • Wu DM, Zhu HX, Zhao QH, et al. Genetic variations in the SMAD4 gene and gastric cancer susceptibility. World J Gastroenterol. 2010;16(44):5635–5641. doi:10.3748/wjg.v16.i44.5635
  • Paradowska-Gorycka A, Romanowska-Prochnicka K, Haladyj E, Manczak M, Maslinski S, Olesinska M. Association of the Smad3 and NFATc2 gene polymorphisms and their serum levels with susceptibility to rheumatoid arthritis in Polish cohorts. Clin Exp Immunol. 2015;179(3):444–453. doi:10.1111/cei.12482
  • Maitra A, Molberg K, Albores-Saavedra J, et al. Loss of Dpc4 expression in colonic adenocarcinomas correlates with the presence of metastatic disease. Am J Pathol. 2000;157(4):1105–1111. doi:10.1016/S0002-9440(10)64625-1
  • Xie W, Rimm DL, Lin Y, et al. Loss of smad signaling in human colorectal cancer is associated with advanced disease and poor prognosis. Cancer J. 2003;9(4):302–312. doi:10.1097/00130404-200307000-00013
  • Alazzouzi H, Alhopuro P, Salovaara R, et al. SMAD4 as a prognostic marker in colorectal cancer. Clin Cancer Res. 2005;11(7):2606–2611.
  • Miyaki M, Iijima T, Konishi M, et al. Higher frequency of Smad4 gene mutation in human colorectal cancer with distant metastasis. Oncogene. 1999;18(20):3098–3103. doi:10.1038/sj.onc.1202642
  • Samani NJ, Erdmann J, Hall AS, et al. Genome wide association analysis of coronary artery disease. N Engl J Med. 2007;357:443–453. doi:10.1056/NEJMoa072366
  • Doaei S, Hajiesmaeil M, Aminifard A, et al. Effects of gene polymorphisms of metabolic enzymes on the association between red and processed meat consumption and the development of colon cancer; a literature review. J Nutr Sci. 2018;7(26):1–7. doi:10.1017/jns.2018.17