151
Views
0
CrossRef citations to date
0
Altmetric
Original Research

The Association Between Azathioprine Genetic Polymorphisms, Clinical Efficacy and Adverse Drug Reactions Among Egyptian Patients with Autoimmune Diseases

, &
Pages 179-187 | Published online: 02 Feb 2021

References

  • Das PK, Elliott G. Conference scene: lessons from animal models of autoimmune diseases: from mechanisms to applications. Immunotherapy. 2011;3(2):147–151. doi:10.2217/imt.10.102
  • Sinha AA, Lopez MT, McDevitt HO. Autoimmune diseases: the failure of self tolerance. Science. 1990;248(4961):1380–1388. doi:10.1126/science.1972595
  • Goding JW. Autoimmune diseases. N Engl J Med. 2001;345(23):1707–1708.
  • Lennard L. The clinical pharmacology of 6-mercaptopurine. Eur J Clin Pharmacol. 1992;43(4):329–339. doi:10.1007/BF02220605
  • Lennard L. TPMT in the treatment of Crohn’s disease with azathioprine. Gut. 2002;51(2):143–146. doi:10.1136/gut.51.2.143
  • Appell ML, Berg J, Duley J, et al. Nomenclature for alleles of the thiopurine methyltransferase gene. Pharmacogenet Genomics. 2013;23(4):242–248. doi:10.1097/FPC.0b013e32835f1cc0
  • Collie-Duguid ES, Pritchard P, Powrie P, et al. The frequency and distribution of thiopurine methyltransferase alleles in Caucasian and Asian populations. Pharmacogenetics. 1999;9(1):37–42.
  • Engen RM, Marsh S, Van Booven DJ, et al. Ethnic differences in pharmacogenetically relevant genes. Curr Drug Targets. 2006;7(12):1641–1648. doi:10.2174/138945006779025446
  • Weinshilboum RM, Sladek SL. Mercaptopurine pharmacogenetics: monogenic inheritance of erythrocyte thiopurine methyltransferase activity.. Am J Hum Genet. 1980;32(5):651–662.
  • Egan LJ, Derijks LJJ, Hommes DW. Pharmacogenomics in inflammatory bowel disease. Clin Gastroenterol Hepatol. 2006;4(1):21–28. doi:10.1016/j.cgh.2005.10.003
  • Relling MV, Gardner EE, Sandborn WJ, et al. Clinical Pharmacogenetics Implementation Consortium guidelines for thiopurine methyltransferase genotype and thiopurine dosing. Clin Pharmacol Ther. 2011;89(3):387–391. doi:10.1038/clpt.2010.320
  • Relling MV, Gardner EE, Sandborn WJ, et al. Clinical pharmacogenetics implementation consortium guidelines for thiopurine methyltransferase genotype and thiopurine dosing: 2013 update. Clin Pharmacol Ther. 2013;93(4):324–325. doi:10.1038/clpt.2013.4
  • Anstey AV, Wakelin S, Reynolds NJ. British Association of Dermatologists Therapy G, Audit S. Guidelines for prescribing azathioprine in dermatology. Br J Dermatol. 2004;151(6):1123–1132. doi:10.1111/j.1365-2133.2004.06323.x
  • Ford LT, Berg JD. Thiopurine S-methyltransferase (TPMT) assessment prior to starting thiopurine drug treatment; a pharmacogenomic test whose time has come. J Clin Pathol. 2010;63:288–295. doi:10.1136/jcp.2009.069252
  • Schmiegelow K, Forestier E, Hellebostad M, et al. Long-term results of NOPHO ALL-92 and ALL-2000 studies of childhood acute lymphoblastic leukemia. Leukemia. 2010;24(2):345–354. doi:10.1038/leu.2009.251
  • Hamdy SI, Hiratsuka M, Narahara K, et al. Genotype and allele frequencies of TPMT, GST, SULT1A1 and MDR-1in the Egyptian population. British Journal of Clinical Pharmacology. 2003;55(6):560–569. doi:10.1046/j.1365-2125.2003.01786.x
  • Kubota T, Chiba K. Frequencies of thiopurine S-methyltransferase mutant alleles (TPMT*2, *3A, *3B and *3C) in 151 healthy Japanese subjects and the inheritance of TPMT*3C in the family of a propositus. Br J Clin Pharmacol. 2001;51(5):475–477.
  • Kumagai K, Hiyama K, Ishioka S, et al. Allelotype frequency of the thiopurine methyltransferase (TPMT) gene in Japanese. Pharmacogenetics. 2001;11(3):275–278. doi:10.1097/00008571-200104000-00012
  • Hiratsuka M, Inoue T, Omori F, et al. Genetic analysis of thiopurine methyltransferase polymorphism in a Japanese population. Mutat Res. 2000;448(1):91–95. doi:10.1016/S0027-5107(00)00004-X
  • Ameyaw MM. Thiopurine methyltransferase alleles in British and Ghanaian populations. Hum Mol Genet. 1999;8(2):367–370. doi:10.1093/hmg/8.2.367
  • Hon YY, et al. Polymorphism of the thiopurine S-methyltransferase gene in African- Americans. Hum Mol Genet. 1999;8(2):371–376. doi:10.1093/hmg/8.2.371
  • Chang J, Lee L, Chen C, et al. Molecular analysis of thiopurine S-methyltransferase alleles in South-east Asian populations. Pharmacogenetics. 2002;12(3):191–195. doi:10.1097/00008571-200204000-00003
  • Collie-Duguid ESR, Pritchard P. The frequency and distribution of thiopurine methyltransferase alleles in Caucasian and Asian populations. Pharmacogenetics. 1999;9(1):37–42. doi:10.1097/00008571-199902000-00006
  • Kubota T, Chiba K. Frequencies of thiopurine S-methyltransferase mutant alleles (TPMT*2, *3A, *3B and *3C) in 151 healthy Japanese subjects and the inheritance of TPMT*3C in the family of a propositus. British Journal of Clinical Pharmacology. 2001;51(5):475–477. doi:10.1046/j.1365-2125.2001.01371.x
  • Schaeffeler E, Jaeger SU, Klumpp V, et al. Impact of NUDT15 genetics on severe thiopurine-related hematotoxicity in patients with European ancestry. Genet Med. 2019;21(9):2145–2150. doi:10.1038/s41436-019-0448-7
  • Siva C. Pharmacogenetics in rheumatology: the prospects and limitations of an emerging field. Rheumatology. 2002;41(11):1273–1279. doi:10.1093/rheumatology/41.11.1273
  • Weinshilboum R, Guttmacher AE, Collins FS. Inheritance and drug response. N Engl J Med. 2003;348(6):529–537. doi:10.1056/NEJMra020021
  • Arnott IDR, Watts D, Satsangi J. Azathioprine and anti-TNFα therapies in Crohn’s disease: a review of pharmacology, clinical efficacy and safety. Pharmacol Res. 2003;47(1):1–10. doi:10.1016/S1043-6618(02)00264-5
  • McLeod HL, Siva C. The thiopurine S-methyltransferase gene locus – implications for clinical pharmacogenomics. Pharmacogenomics. 2002;3(1):89–98. doi:10.1517/14622416.3.1.89
  • Evans WE, Hon YY, Bomgaars L, et al. Preponderance of thiopurine S-methyltransferase deficiency and heterozygosity among patients intolerant to mercaptopurine or azathioprine. Journal of Clinical Oncology. 2001;19(8):2293–2301. doi:10.1200/JCO.2001.19.8.2293
  • Stocco G, Cheok MH, Crews KR, et al. Genetic polymorphism of inosine triphosphate pyrophosphatase is a determinant of mercaptopurine metabolism and toxicity during treatment for acute lymphoblastic leukemia. Clinical Pharmacology & Therapeutics. 2009;85(2):164–172. doi:10.1038/clpt.2008.154
  • Schaeffeler E, Fischer C, Brockmeier D, et al. Comprehensive analysis of thiopurine S-methyltransferase phenotype???genotype correlation in a large population of German-Caucasians and identification of novel TPMT variants. Pharmacogenetics. 2004;14(7):407–417. doi:10.1097/01.fpc.0000114745.08559.db
  • Pettersson B, Almer S, Albertioni F, et al. Differences between children and adults in thiopurine methyltransferase activity and metabolite formation during thiopurine therapy: possible role of concomitant methotrexate. Ther Drug Monit. 2002;24(3):351–358. doi:10.1097/00007691-200206000-00005
  • Indjova D, Atanasova S, Shipkova M, et al. Phenotypic and genotypic analysis of thiopurine s-methyltransferase polymorphism in the bulgarian population. Ther Drug Monit. 2003;25(5):631–636. doi:10.1097/00007691-200310000-00013
  • Baker DE. Pharmacogenomics of azathioprine and 6-mercaptopurine in gastroenterologic therapy.. Rev Gastroenterol Disord. 2003;3(3):150–157.
  • Campbell S, Kingstone K, Ghosh S. Relevance of thiopurine methyltransferase activity in inflammatory bowel disease patients maintained on low-dose azathioprine. Aliment Pharmacol Ther. 2002;16(3):389–398. doi:10.1046/j.1365-2036.2002.01177.x