143
Views
1
CrossRef citations to date
0
Altmetric
Original Research

Whole-Exome Sequencing in Patients Affected by Stevens-Johnson Syndrome and Toxic Epidermal Necrolysis Reveals New Variants Potentially Contributing to the Phenotype

ORCID Icon, ORCID Icon, ORCID Icon, &
Pages 287-299 | Published online: 01 Mar 2021

References

  • Aronson JK, Ferner RE. Clarification of terminology in drug safety. Drug Saf. 2005;28(10):851–870. doi:10.2165/00002018-200528100-00003
  • Yip VL, Alfirevic A, Pirmohamed M. Genetics of immune-mediated adverse drug reactions: a comprehensive and clinical review. Clin Rev Allergy Immunol. 2015;48(2–3):165–175. doi:10.1007/s12016-014-8418-y
  • Duong TA, Valeyrie-Allanore L, Wolkenstein P, Chosidow O. Severe cutaneous adverse reactions to drugs. Lancet. 2017;390(10106):1996–2011. doi:10.1016/s0140-6736(16)30378-6
  • Abe R. Immunological response in Stevens-Johnson syndrome and toxic epidermal necrolysis. J Dermatol. 2015;42(1):42–48. doi:10.1111/1346-8138.12674
  • Chung WH, Hung SI, Hong HS, et al. Medical genetics: a marker for Stevens-Johnson syndrome. Nature. 2004;428(6982):486. doi:10.1038/428486a
  • Man CB, Kwan P, Baum L, et al. Association between HLA-B*1502 allele and antiepileptic drug-induced cutaneous reactions in Han Chinese. Epilepsia. 2007;48(5):1015–1018. doi:10.1111/j.1528-1167.2007.01022.x
  • Tassaneeyakul W, Tiamkao S, Jantararoungtong T, et al. Association between HLA-B*1502 and carbamazepine-induced severe cutaneous adverse drug reactions in a Thai population. Epilepsia. 2010;51(5):926–930. doi:10.1111/j.1528-1167.2010.02533.x
  • Fan WL, Shiao MS, Hui RC, et al. HLA association with drug-induced adverse reactions. J Immunol Res. 2017;2017:3186328. doi:10.1155/2017/3186328
  • Mullan KA, Anderson A, Illing PT, Kwan P, Purcell AW, Mifsud NA. HLA-associated antiepileptic drug-induced cutaneous adverse reactions. Hla. 2019;93(6):417–435. doi:10.1111/tan.13530
  • Chen CB, Abe R, Pan RY, et al. An updated review of the molecular mechanisms in drug hypersensitivity. J Immunol Res. 2018;2018:6431694. doi:10.1155/2018/6431694
  • Ciccacci C, Di Fusco D, Marazzi MC, et al. Association between CYP2B6 polymorphisms and Nevirapine-induced SJS/TEN: a pharmacogenetics study. Eur J Clin Pharmacol. 2013;69(11):1909–1916. doi:10.1007/s00228-013-1549-x
  • Schwartz RA, McDonough PH, Lee BW. Toxic epidermal necrolysis: part I. Introduction, history, classification, clinical features, systemic manifestations, etiology, and immunopathogenesis. J Am Acad Dermatol. 2013;69(2):173.e1–6. doi:10.1016/j.jaad.2013.05.003
  • Caruso A, Bellia C, Pivetti A, et al. Effects of EPHX1 and CYP3A4 polymorphisms on carbamazepine metabolism in epileptic patients. Pharmgenomics Pers Med. 2014;7:117–120. doi:10.2147/pgpm.S55548
  • He XJ, Jian LY, He XL, et al. Association of ABCB1, CYP3A4, EPHX1, FAS, SCN1A, MICA, and BAG6 polymorphisms with the risk of carbamazepine-induced Stevens-Johnson syndrome/toxic epidermal necrolysis in Chinese Han patients with epilepsy. Epilepsia. 2014;55(8):1301–1306. doi:10.1111/epi.12655
  • Ueta M, Sawai H, Sotozono C, et al. IKZF1, a new susceptibility gene for cold medicine-related Stevens-Johnson syndrome/toxic epidermal necrolysis with severe mucosal involvement. J Allergy Clin Immunol. 2015;135(6):1538–45.e17. doi:10.1016/j.jaci.2014.12.1916
  • Chung WH, Hung SI, Yang JY, et al. Granulysin is a key mediator for disseminated keratinocyte death in Stevens-Johnson syndrome and toxic epidermal necrolysis. Nat Med. 2008;14(12):1343–1350. doi:10.1038/nm.1884
  • Fonseca DJ, Caro LA, Sierra-Diaz DC, et al. Mutant GNLY is linked to Stevens-Johnson syndrome and toxic epidermal necrolysis. Hum Genet. 2019;138(11–12):1267–1274. doi:10.1007/s00439-019-02066-w
  • Roujeau JC. Stevens-Johnson syndrome and toxic epidermal necrolysis are severity variants of the same disease which differs from erythema multiforme. J Dermatol. 1997;24(11):726–729. doi:10.1111/j.1346-8138.1997.tb02524.x
  • Patino LC, Beau I, Morel A, et al. Functional evidence implicating NOTCH2 missense mutations in primary ovarian insufficiency etiology. Hum Mutat. 2019;40(1):25–30. doi:10.1002/humu.23667
  • Quintero-Ronderos P, Jimenez KM, Esteban-Perez C, et al. FOXD1 mutations are related to repeated implantation failure, intra-uterine growth restriction and preeclampsia. Mol Med. 2019;25(1):37. doi:10.1186/s10020-019-0104-3
  • About F, Bibert S, Jouanguy E, et al. Identification of an endoglin variant associated with HCV-related liver fibrosis progression by next-generation sequencing. Front Genet. 2019;10:1024. doi:10.3389/fgene.2019.01024
  • Rojnueangnit K, Sirichongkolthong B, Wongwandee R, et al. Identification of gene mutations in primary pediatric cardiomyopathy by whole exome sequencing. Pediatr Cardiol. 2020;41(1):165–174. doi:10.1007/s00246-019-02240-x
  • Delcour C, Amazit L, Patino LC, et al. ATG7 and ATG9A loss-of-function variants trigger autophagy impairment and ovarian failure. Genet Med. 2019;21(4):930–938. doi:10.1038/s41436-018-0287-y
  • Machini K, Ceyhan-Birsoy O, Azzariti DR, et al. Analyzing and reanalyzing the genome: findings from the MedSeq project. Am J Hum Genet. 2019;105(1):177–188. doi:10.1016/j.ajhg.2019.05.017
  • Laissue P, Lakhal B, Vatin M, et al. Association of FOXD1 variants with adverse pregnancy outcomes in mice and humans. Open Biol. 2016;6(10):Oct. doi:10.1098/rsob.160109
  • Emond MJ, Louie T, Emerson J, et al. Exome sequencing of extreme phenotypes identifies DCTN4 as a modifier of chronic Pseudomonas aeruginosa infection in cystic fibrosis. Nat Genet. 2012;44(8):886–889. doi:10.1038/ng.2344
  • Li B, Liu DJ, Leal SM. Identifying rare variants associated with complex traits via sequencing. Curr Protoc Hum Genet. 2013;78(1). doi:10.1002/0471142905.hg0126s78
  • Johar AS, Anaya JM, Andrews D, et al. Candidate gene discovery in autoimmunity by using extreme phenotypes, next generation sequencing and whole exome capture. Autoimmun Rev. 2015;14(3):204–209. doi:10.1016/j.autrev.2014.10.021
  • Ciccacci C, Latini A, Politi C, et al. Impact of glutathione transferases genes polymorphisms in nevirapine adverse reactions: a possible role for GSTM1 in SJS/TEN susceptibility. Eur J Clin Pharmacol. 2017;73(10):1253–1259. doi:10.1007/s00228-017-2295-2
  • Salvador-Martin S, Garcia-Gonzalez X, Garcia MI, et al. Clinical utility of ABCB1 genotyping for preventing toxicity in treatment with irinotecan. Pharmacol Res. 2018;136:133–139. doi:10.1016/j.phrs.2018.08.026
  • Galvez JM, Restrepo CM, Contreras NC, et al. Creating and validating a warfarin pharmacogenetic dosing algorithm for Colombian patients. Pharmgenomics Pers Med. 2018;11:169–178. doi:10.2147/pgpm.s170515
  • Margarit C, Ballester P, Inda MD, et al. OPRM1 gene interaction with sleep in chronic pain patients treated with opioids. Pain Physician. 2019;22(1):97–107.
  • Ahn E, Park T. Analysis of population-specific pharmacogenomic variants using next-generation sequencing data. Sci Rep. 2017;7(1):8416. doi:10.1038/s41598-017-08468-y
  • Ingelman-Sundberg M, Mkrtchian S, Zhou Y, Lauschke VM. Integrating rare genetic variants into pharmacogenetic drug response predictions. Hum Genomics. 2018;12(1):26. doi:10.1186/s40246-018-0157-3
  • Wright GEB, Carleton B, Hayden MR, Ross CJD. The global spectrum of protein-coding pharmacogenomic diversity. Pharmacogenomics J. 2018;18(1):187–195. doi:10.1038/tpj.2016.77
  • Lauschke VM, Ingelman-Sundberg M. Prediction of drug response and adverse drug reactions: from twin studies to next generation sequencing. Eur J Pharm Sci. 2019;130:65–77. doi:10.1016/j.ejps.2019.01.024
  • Daily EB, Aquilante CL. Cytochrome P450 2C8 pharmacogenetics: a review of clinical studies. Pharmacogenomics. 2009;10(9):1489–1510. doi:10.2217/pgs.09.82
  • Gao Y, Liu D, Wang H, Zhu J, Chen C. Functional characterization of five CYP2C8 variants and prediction of CYP2C8 genotype-dependent effects on in vitro and in vivo drug-drug interactions. Xenobiotica. 2010;40(7):467–475. doi:10.3109/00498254.2010.487163
  • Backman JT, Filppula AM, Niemi M, Neuvonen PJ. Role of cytochrome P450 2C8 in drug metabolism and interactions. Pharmacol Rev. 2016;68(1):168–241. doi:10.1124/pr.115.011411
  • Pearce RE, Lu W, Wang Y, Uetrecht JP, Correia MA, Leeder JS. Pathways of carbamazepine bioactivation in vitro. III. The role of human cytochrome P450 enzymes in the formation of 2,3-dihydroxycarbamazepine. Drug Metab Dispos. 2008;36(8):1637–1649. doi:10.1124/dmd.107.019562
  • Posadas SJ, Padial A, Torres MJ, et al. Delayed reactions to drugs show levels of perforin, granzyme B, and Fas-L to be related to disease severity. J Allergy Clin Immunol. 2002;109(1):155–161. doi:10.1067/mai.2002.120563
  • Paganotti GM, Russo G, Sobze MS, et al. CYP2B6 poor metaboliser alleles involved in efavirenz and nevirapine metabolism: CYP2B6*9 and CYP2B6*18 distribution in HIV-exposed subjects from Dschang, Western Cameroon. Infect Genet Evol. 2015;35:122–126. doi:10.1016/j.meegid.2015.08.003
  • Hofmann MH, Blievernicht JK, Klein K, et al. Aberrant splicing caused by single nucleotide polymorphism c.516G>T [Q172H], a marker of CYP2B6*6, is responsible for decreased expression and activity of CYP2B6 in liver. J Pharmacol Exp Ther. 2008;325(1):284–292. doi:10.1124/jpet.107.133306
  • Amstutz U, Shear NH, Rieder MJ, et al. Recommendations for HLA-B*15:02 and HLA-A*31:01 genetic testing to reduce the risk of carbamazepine-induced hypersensitivity reactions. Epilepsia. 2014;55(4):496–506. doi:10.1111/epi.12564
  • Pearce RE, Uetrecht JP, Leeder JS. Pathways of carbamazepine bioactivation in vitro: II. The role of human cytochrome P450 enzymes in the formation of 2-hydroxyiminostilbene. Drug Metab Dispos. 2005;33(12):1819–1826. doi:10.1124/dmd.105.004861
  • Wei CY, Chung WH, Huang HW, Chen YT, Hung SI. Direct interaction between HLA-B and carbamazepine activates T cells in patients with Stevens-Johnson syndrome. J Allergy Clin Immunol. 2012;129(6):1562–9.e5. doi:10.1016/j.jaci.2011.12.990
  • Kim WJ, Lee JH, Yi J, et al. A nonsynonymous variation in MRP2/ABCC2 is associated with neurological adverse drug reactions of carbamazepine in patients with epilepsy. Pharmacogenet Genomics. 2010;20(4):249–256. doi:10.1097/FPC.0b013e328338073a
  • Lu Q, Huang YT, Shu Y, et al. Effects of CYP3A5 and UGT2B7 variants on steady-state carbamazepine concentrations in Chinese epileptic patients. Medicine. 2018;97(30):e11662. doi:10.1097/md.0000000000011662
  • Krauss G. Current understanding of delayed anticonvulsant hypersensitivity reactions. Epilepsy Curr. 2006;6(2):33–37. doi:10.1111/j.1535-7511.2006.00089.x
  • Chen H, Grover S, Yu L, Walker G, Mutlib A. Bioactivation of lamotrigine in vivo in rat and in vitro in human liver microsomes, hepatocytes, and epidermal keratinocytes: characterization of thioether conjugates by liquid chromatography/mass spectrometry and high field nuclear magnetic resonance spectroscopy. Chem Res Toxicol. 2010;23(1):159–170. doi:10.1021/tx9003243
  • Ramirez B, Nino-Orrego MJ, Cardenas D, et al. Copy number variation profiling in pharmacogenetics CYP-450 and GST genes in Colombian population. BMC Med Genomics. 2019;12(1):110. doi:10.1186/s12920-019-0556-x
  • Doig MV, Clare RA. Use of thermospray liquid chromatography-mass spectrometry to aid in the identification of urinary metabolites of a novel antiepileptic drug, Lamotrigine. J Chromatogr. 1991;554(1–2):181–189. doi:10.1016/s0021-9673(01)88448-x
  • Vazquez M, Maldonado C, Guevara N, et al. Lamotrigine-valproic acid interaction leading to Stevens-Johnson syndrome. Case Rep Med. 2018;2018:5371854. doi:10.1155/2018/5371854
  • Kaur S, Dogra A. Toxic epidermal necrolysis due to concomitant use of lamotrigine and valproic Acid. Indian J Dermatol. 2013;58(5):406. doi:10.4103/0019-5154.117319
  • Kocak S, Girisgin SA, Gul M, Cander B, Kaya H, Kaya E. Stevens-Johnson syndrome due to concomitant use of lamotrigine and valproic acid. Am J Clin Dermatol. 2007;8(2):107–111. doi:10.2165/00128071-200708020-00007
  • Maduemem K, Vatca A, O’Neill T, Buckley D. Stevens-Johnson Syndrome induced by combination of lamotrigine and valproic acid in a 9-year-old boy. Ir Med J. 2017;110(6):586.
  • Bautista L, Aleta L, Berba R, Sumpaico M. Toxic epidermal necrolysis from intramuscular metoclopramide in a 52-year old male. Ann Allergy Asthma Immunol. 2008;100:A34–A34.
  • Rajagopalan S, Kaur S, Dogra S, et al. Toxic epidermal necrolysis induced by rarely implicated drugs. Indian J Pharmacol. 2012;44(2):272–273. doi:10.4103/0253-7613.93871
  • Ingelman-Sundberg M. Genetic polymorphisms of cytochrome P450 2D6 (CYP2D6): clinical consequences, evolutionary aspects and functional diversity. Pharmacogenomics J. 2005;5(1):6–13. doi:10.1038/sj.tpj.6500285
  • Gaedigk A, Sangkuhl K, Whirl-Carrillo M, Klein T, Leeder JS. Prediction of CYP2D6 phenotype from genotype across world populations. Genet Med. 2017;19(1):69–76. doi:10.1038/gim.2016.80
  • Finkelstein Y, Macdonald EM, Li P, Hutson JR, Juurlink DN. Recurrence and mortality following severe cutaneous adverse reactions. JAMA. 2014;311(21):2231–2232. doi:10.1001/jama.2014.839
  • Dietrich A, Kawakubo Y, Rzany B, Mockenhaupt M, Simon JC, Schopf SE. Low N-acetylating capacity in patients with Stevens-Johnson syndrome and toxic epidermal necrolysis. Exp Dermatol. 1995;4(5):313–316. doi:10.1111/j.1600-0625.1995.tb00211.x
  • Furet Y, Bechtel Y, Le Guellec C, Bechtel PR, Autret-Leca E, Paintaud G. Pertinence clinique du polymorphisme genetique de la N-acetyltransferase de type 2 (NAT2) [Clinical relevance of N-acetyltransferase type 2 (NAT2) genetic polymorphism]. Therapie. 2002;57(5):427–431.
  • Dalton R, Lee SB, Claw KG, et al. Interrogation of CYP2D6 structural variant alleles improves the correlation between CYP2D6 genotype and CYP2D6-mediated metabolic activity. Clin Transl Sci. 2020;13(1):147–156. doi:10.1111/cts.12695
  • Naranjo MG, Rodrigues-Soares F, Penas-Lledo EM, et al. Interethnic variability in CYP2D6, CYP2C9, and CYP2C19 genes and predicted drug metabolism phenotypes among 6060 Ibero- and native Americans: ribef-ceiba consortium report on population pharmacogenomics. Omics. 2018;22(9):575–588. doi:10.1089/omi.2018.0114
  • Henthorn P, Kiledjian M, Kadesch T. Two distinct transcription factors that bind the immunoglobulin enhancer microE5/kappa 2 motif. Science. 1990;247(4941):467–470. doi:10.1126/science.2105528
  • Denis CM, Langelaan DN, Kirlin AC, et al. Functional redundancy between the transcriptional activation domains of E2A is mediated by binding to the KIX domain of CBP/p300. Nucleic Acids Res. 2014;42(11):7370–7382. doi:10.1093/nar/gku206
  • Massari ME, Murre C. Helix-loop-helix proteins: regulators of transcription in eucaryotic organisms. Mol Cell Biol. 2000;20(2):429–440. doi:10.1128/mcb.20.2.429-440.2000
  • Aronheim A, Shiran R, Rosen A, Walker MD. The E2A gene product contains two separable and functionally distinct transcription activation domains. Proc Natl Acad Sci U S A. 1993;90(17):8063–8067. doi:10.1073/pnas.90.17.8063
  • Kee BL. E and ID proteins branch out. Nat Rev Immunol. 2009;9(3):175–184. doi:10.1038/nri2507
  • Merrill BJ, Gat U, DasGupta R, Fuchs E. Tcf3 and Lef1 regulate lineage differentiation of multipotent stem cells in skin. Genes Dev. 2001;15(13):1688–1705. doi:10.1101/gad.891401
  • DasGupta R, Fuchs E. Multiple roles for activated LEF/TCF transcription complexes during hair follicle development and differentiation. Development. 1999;126(20):4557–4568.
  • Howard JM, Nuguid JM, Ngole D, Nguyen H. Tcf3 expression marks both stem and progenitor cells in multiple epithelia. Development. 2014;141(16):3143–3152. doi:10.1242/dev.106989
  • Nguyen H, Merrill BJ, Polak L, et al. Tcf3 and Tcf4 are essential for long-term homeostasis of skin epithelia. Nat Genet. 2009;41(10):1068–1075. doi:10.1038/ng.431
  • Miao Q, Ku AT, Nishino Y, et al. Tcf3 promotes cell migration and wound repair through regulation of lipocalin 2. Nat Commun. 2014;5(1):4088. doi:10.1038/ncomms5088
  • Ichise T, Yoshida N, Ichise H. CBP/p300 antagonises EGFR-Ras-Erk signalling and suppresses increased Ras-Erk signalling-induced tumour formation in mice. J Pathol. 2019;249(1):39–51. doi:10.1002/path.5279