637
Views
5
CrossRef citations to date
0
Altmetric
Review

Review on Databases and Bioinformatic Approaches on Pharmacogenomics of Adverse Drug Reactions

, , , , &
Pages 61-75 | Published online: 13 Jan 2021

References

  • Wheatley LM, Plaut M, Schwaninger JM, et al. Report from the National Institute of Allergy and Infectious Diseases workshop on drug allergy. J Allergy Clin Immunol. 2015;136(2):262–71.e2. doi:10.1016/j.jaci.2015.05.027
  • Uetrecht J. Idiosyncratic drug reactions: current understanding. Annu Rev Pharmacol Toxicol. 2007;47(1):513–539. doi:10.1146/annurev.pharmtox.47.120505.105150
  • Hunziker T, Künzi U-P, Braunschweig S, et al. Comprehensive hospital drug monitoring (CHDM): adverse skin reactions, a 20-year survey. Allergy. 1997;52(4):388–393. doi:10.1111/j.1398-9995.1997.tb01017.x
  • Valeyrie-Allanore L, Sassolas B, Roujeau JC. Drug-induced skin, nail and hair disorders. Drug Saf. 2007;30(11):1011–1030. doi:10.2165/00002018-200730110-00003
  • Sidenius S,PCT,P, Dam M. Lamotrigine-induced rash–worth a rechallenge. Acta Neurol Scand. 2005;111(3):191–194. doi:10.1111/j.1600-0404.2005.00381.x
  • Vonakis BM, Saini SS. New concepts in chronic urticaria. Curr Opin Immunol. 2008;20(6):709–716. doi:10.1016/j.coi.2008.09.005
  • Pereira FA, Mudgil AV, Rosmarin DM. Toxic epidermal necrolysis. J Am Acad Dermatol. 2007;56(2):181–200. doi:10.1016/j.jaad.2006.04.048
  • Downey A, Jackson C, Harun N, et al. Toxic epidermal necrolysis: review of pathogenesis and management. J Am Acad Dermatol. 2012;66(6):995–1003. doi:10.1016/j.jaad.2011.09.029
  • Tang YH, Mockenhaupt M, Henry A, et al. Poor relevance of a lymphocyte proliferation assay in lamotrigine-induced Stevens-Johnson syndrome or toxic epidermal necrolysis. Clin Exp Allergy. 2012;42(2):248–254. doi:10.1111/j.1365-2222.2011.03875.x
  • Wei C-Y, Chung W-H, Huang H-W, et al. Direct interaction between HLA-B and carbamazepine activates T cells in patients with Stevens-Johnson syndrome. J Allergy Clin Immunol. 2012;129(6):1562–9e5. doi:10.1016/j.jaci.2011.12.990
  • Bjornsson E. Review article: drug-induced liver injury in clinical practice. Aliment Pharmacol Ther. 2010;32(1):3–13. doi:10.1111/j.1365-2036.2010.04320.x
  • Clay KD, et al. Brief communication: severe hepatotoxicity of telithromycin: three case reports and literature review. Ann Intern Med. 2006;144(6):415–420. doi:10.7326/0003-4819-144-6-200503210-00121
  • Orman ES, Conjeevaram HS, Vuppalanchi R, et al. Clinical and histopathologic features of fluoroquinolone-induced liver injury. Clin Gastroenterol Hepatol. 2011;9(6):517–523e3. doi:10.1016/j.cgh.2011.02.019
  • Tesfa D, Palmblad J. Late-onset neutropenia following rituximab therapy: incidence, clinical features and possible mechanisms. Expert Rev Hematol. 2011;4(6):619–625. doi:10.1586/ehm.11.62
  • Tesfa D, Keisu M, Palmblad J. Idiosyncratic drug-induced agranulocytosis: possible mechanisms and management. Am J Hematol. 2009;84(7):428–434. doi:10.1002/ajh.21433
  • Aster RH, Curtis BR, McFarland JG, et al. Drug-induced immune thrombocytopenia: pathogenesis, diagnosis, and management. J Thromb Haemost. 2009;7(6):911–918. doi:10.1111/j.1538-7836.2009.03360.x
  • Gandhi TK, Weingart SN, Borus J, et al. Adverse drug events in ambulatory care. N Engl J Med. 2003;348(16):1556–1564. doi:10.1056/NEJMsa020703
  • Gomes ER, Demoly P. Epidemiology of hypersensitivity drug reactions. Curr Opin Allergy Clin Immunol. 2005;5(4):309–316. doi:10.1097/01.all.0000173785.81024.33
  • Lazarou J, Pomeranz BH, Corey PN. Incidence of adverse drug reactions in hospitalized patients: a meta-analysis of prospective studies. JAMA. 1998;279(15):1200–1205. doi:10.1001/jama.279.15.1200
  • Edwards IR, Aronson JK. Adverse drug reactions: definitions, diagnosis, and management. Lancet. 2000;356(9237):1255–1259. doi:10.1016/S0140-6736(00)02799-9
  • Johansson SG, Bieber T, Dahl R, et al. Revised nomenclature for allergy for global use: report of the nomenclature review committee of the World Allergy Organization, October 2003. J Allergy Clin Immunol. 2004;113(5):832–836. doi:10.1016/j.jaci.2003.12.591
  • FDA. Table of Pharmacogenomic Biomarkers in Drug Labeling; 2019.
  • Kaniwa N, Saito Y, Aihara M, et al. HLA-B*1511 is a risk factor for carbamazepine-induced Stevens-Johnson syndrome and toxic epidermal necrolysis in Japanese patients. Epilepsia. 2010;51(12):2461–2465. doi:10.1111/j.1528-1167.2010.02766.x
  • Kim S-H, Lee KW, Song W-J, et al. Carbamazepine-induced severe cutaneous adverse reactions and HLA genotypes in Koreans. Epilepsy Res. 2011;97(1–2):190–197. doi:10.1016/j.eplepsyres.2011.08.010
  • Tassaneeyakul W, Tiamkao S, Jantararoungtong T, et al. Association between HLA-B*1502 and carbamazepine-induced severe cutaneous adverse drug reactions in a Thai population. Epilepsia. 2010;51(5):926–930. doi:10.1111/j.1528-1167.2010.02533.x
  • Hsiao YH, Hui RC-Y, Wu T, et al. Genotype-phenotype association between HLA and carbamazepine-induced hypersensitivity reactions: strength and clinical correlations. J Dermatol Sci. 2014;73(2):101–109. doi:10.1016/j.jdermsci.2013.10.003
  • Yuliwulandari R, Kristin E, Prayuni K, et al. Association of the HLA-B alleles with carbamazepine-induced Stevens-Johnson syndrome/toxic epidermal necrolysis in the Javanese and Sundanese population of Indonesia: the important role of the HLA-B75 serotype. Pharmacogenomics. 2017;18(18):1643–1648. doi:10.2217/pgs-2017-0103
  • Chen P, et al. Carbamazepine-induced toxic effects and HLA-B*1502 screening in Taiwan. N Engl J Med. 2011;364(12):1126–1133. doi:10.1056/NEJMoa1009717
  • Manglani MV, Gabhale YR, Lala MM, et al. HLA- B*5701 Allele in HIV-infected indian children and its association with abacavir hypersensitivity. Indian Pediatr. 2018;55(2):140–141. doi:10.1007/s13312-018-1248-x
  • Mallal S, Nolan D, Witt C, et al. Association between presence of HLA-B*5701, HLA-DR7, and HLA-DQ3 and hypersensitivity to HIV-1 reverse-transcriptase inhibitor abacavir. Lancet. 2002;359(9308):727–732. doi:10.1016/S0140-6736(02)07873-X
  • Agbaji OO, Akanbi M, Otoh I, et al. Absence of human leukocyte antigen-B*57:01 amongst patients on antiretroviral therapy in Nigeria: implications for use of abacavir. Niger Postgrad Med J. 2019;26(4):195–198. doi:10.4103/npmj.npmj_75_19
  • Small CB, Margolis DA, Shaefer MS, et al. HLA-B*57:01 allele prevalence in HIV-infected North American subjects and the impact of allele testing on the incidence of abacavir-associated hypersensitivity reaction in HLA-B*57:01-negative subjects. BMC Infect Dis. 2017;17(1):256. doi:10.1186/s12879-017-2331-y
  • Baniasadi S, et al. Prevalence of HLA-B*5701 and its relationship with abacavir hypersensitivity reaction in Iranian HIV-infected patients. Tanaffos. 2016;15(1):48–52.
  • Martin AM, et al. Predisposition to abacavir hypersensitivity conferred by HLA-B*5701 and a haplotypic Hsp70-Hom variant. Proc Natl Acad Sci U S A. 2004;101(12):4180–4185.
  • Sun HY, Numanagić I, Malikić S, et al. Incidence of abacavir hypersensitivity and its relationship with HLA-B*5701 in HIV-infected patients in Taiwan. J Antimicrob Chemother. 2007;60(3):599–604. doi:10.1093/jac/dkm243
  • Arrieta-Bolanos E, Madrigal JA, Marsh SGE, et al. The frequency of HLA-B(*)57:01 and the risk of abacavir hypersensitivity reactions in the majority population of Costa Rica. Hum Immunol. 2014;75(11):1092–1096. doi:10.1016/j.humimm.2014.09.011
  • Hughes AR, Mosteller M, Bansal AT, et al. Association of genetic variations in HLA-B region with hypersensitivity to abacavir in some, but not all, populations. Pharmacogenomics. 2004;5(2):203–211. doi:10.1517/phgs.5.2.203.27481
  • Nakkam N, et al. HLA pharmacogenetic markers of drug hypersensitivity in a Thai Population. Front Genet. 2018;9:277. doi:10.3389/fgene.2018.00277
  • Jaruthamsophon K, Tipmanee V, Sangiemchoey A, et al. HLA-B*15:21 and carbamazepine-induced Stevens-Johnson syndrome: pooled-data and in silico analysis. Sci Rep. 2017;7(1):45553. doi:10.1038/srep45553
  • Cargnin S, Jommi C, Canonico PL, et al. Diagnostic accuracy of HLA-B*57:01 screening for the prediction of abacavir hypersensitivity and clinical utility of the test: a meta-analytic review. Pharmacogenomics. 2014;15(7):963–976. doi:10.2217/pgs.14.52
  • Ang HX, Chan SL, Sani LL, et al. Pharmacogenomics in Asia: a systematic review on current trends and novel discoveries. Pharmacogenomics. 2017;18(9):891–910. doi:10.2217/pgs-2017-0009
  • Ayuso P, Plaza-Serón MDC, Blanca-López N, et al. Genetic variants in arachidonic acid pathway genes associated with NSAID-exacerbated respiratory disease. Pharmacogenomics. 2015;16(8):825–839. doi:10.2217/pgs.15.43
  • de Oliveira Rodrigues R, Helena Barem Rabenhorst S, Germano de Carvalho P, et al. Association of IL10, IL4, IFNG, and CTLA4 Gene polymorphisms with efavirenz hypersensitivity reaction in patients infected with human immunodeficiency virus. Jpn J Infect Dis. 2017;70(4):430–436. doi:10.7883/yoken.JJID.2016.075
  • Smith RP, Eckalbar WL, Morrissey KM, et al. Genome-wide discovery of drug-dependent human liver regulatory elements. PLoS Genet. 2014;10(10):e1004648. doi:10.1371/journal.pgen.1004648
  • Wadelius M. Point: use of pharmacogenetics in guiding treatment with warfarin. Clin Chem. 2009;55(4):709–711. doi:10.1373/clinchem.2008.115964
  • Nguyen DV, Vidal C, Chu HC, et al. Developing pharmacogenetic screening methods for an emergent country: vietnam. World Allergy Organ J. 2019;12(5):100037. doi:10.1016/j.waojou.2019.100037
  • Pan C-W, Yu C-H, Liao D-L. Carbamazepine-induced hypersensitivity syndrome in chronic schizophrenia. Gen Hosp Psychiatry. 2013;35(5):575 e9–10. doi:10.1016/j.genhosppsych.2012.08.004
  • Dello Russo C, Lisi L, Fabbiani M, et al. Detection of HLA-B*57:01 by real-time PCR: implementation into routine clinical practice and additional validation data. Pharmacogenomics. 2014;15(3):319–327. doi:10.2217/pgs.13.242
  • Moragas M, Belloso WH, Baquedano MS, et al. Prevalence of HLA-B*57:01 allele in Argentinean HIV-1 infected patients. Tissue Antigens. 2015;86(1):28–31. doi:10.1111/tan.12575
  • Dello Russo C, Lisi L, Lofaro A, et al. Novel sensitive, specific and rapid pharmacogenomic test for the prediction of abacavir hypersensitivity reaction: HLA-B*57:01 detection by real-time PCR. Pharmacogenomics. 2011;12(4):567–576. doi:10.2217/pgs.10.208
  • Aggarwal R, Sharma M, Modi M, et al. HLA-B * 1502 is associated with carbamazepine induced Stevens-Johnson syndrome in North Indian population. Hum Immunol. 2014;75(11):1120–1122. doi:10.1016/j.humimm.2014.09.022
  • Nguyen DV, Chu HC, Nguyen DV, et al. HLA-B*1502 and carbamazepine-induced severe cutaneous adverse drug reactions in Vietnamese. Asia Pac Allergy. 2015;5(2):68–77. doi:10.5415/apallergy.2015.5.2.68
  • Mushiroda T, et al. Association of HLA-A*31:01 screening with the incidence of carbamazepine-induced cutaneous adverse reactions in a Japanese population. JAMA Neurol. 2018;75(7):842–849.
  • Nguyen DV, Vidal C, Chi HC, et al. A novel multiplex polymerase chain reaction assay for detection of both HLA-A*31:01/HLA-B*15:02 alleles, which confer susceptibility to carbamazepine-induced severe cutaneous adverse reactions. HLA. 2017;90(6):335–342. doi:10.1111/tan.13143
  • Ciccacci C, et al. Association between CYP2B6 polymorphisms and Nevirapine-induced SJS/TEN: a pharmacogenetics study. Eur J Clin Pharmacol. 2013;69(11):1909–1916. doi:10.1007/s00228-013-1549-x
  • Ciccacci C, Rufini S, Mancinelli S, et al. A pharmacogenetics study in Mozambican patients treated with nevirapine: full resequencing of TRAF3IP2 gene shows a novel association with SJS/TEN susceptibility. Int J Mol Sci. 2015;16(3):5830–5838. doi:10.3390/ijms16035830
  • Carr DF, Chaponda M, Cornejo Castro EM, et al. CYP2B6 c.983T>C polymorphism is associated with nevirapine hypersensitivity in Malawian and Ugandan HIV populations. J Antimicrob Chemother. 2014;69(12):3329–3334. doi:10.1093/jac/dku315
  • Cheung Y-K, Cheng S-H, Chan EJM, et al. HLA-B alleles associated with severe cutaneous reactions to antiepileptic drugs in Han Chinese. Epilepsia. 2013;54(7):1307–1314. doi:10.1111/epi.12217
  • Chang -C-C, Ng -C-C, Too C-L, et al. Association of HLA-B*15:13 and HLA-B*15:02 with phenytoin-induced severe cutaneous adverse reactions in a Malay population. Pharmacogenomics J. 2017;17(2):170–173. doi:10.1038/tpj.2016.10
  • Tassaneeyakul W, Prabmeechai N, Sukasem C, et al. Associations between HLA class I and cytochrome P450 2C9 genetic polymorphisms and phenytoin-related severe cutaneous adverse reactions in a Thai population. Pharmacogenet Genomics. 2016;26(5):225–234. doi:10.1097/FPC.0000000000000211
  • Pirmohamed M, Alfirevic A, Vilar J, et al. Association analysis of drug metabolizing enzyme gene polymorphisms in HIV-positive patients with co-trimoxazole hypersensitivity. Pharmacogenetics. 2000;10(8):705–713. doi:10.1097/00008571-200011000-00005
  • Scharfe CPI, Tremmel R, Schwab M, et al. Genetic variation in human drug-related genes. Genome Med. 2017;9(1):117. doi:10.1186/s13073-017-0502-5
  • Low S-K, Takahashi A, Mushiroda T, et al. Genome-wide association study: a useful tool to identify common genetic variants associated with drug toxicity and efficacy in cancer pharmacogenomics. Clin Cancer Res. 2014;20(10):2541–2552. doi:10.1158/1078-0432.CCR-13-2755
  • Buniello A, et al., The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res, 2019. 47(D1): D1005–D1012.
  • Klein RJ. Power analysis for genome-wide association studies. BMC Genet. 2007;8(1):58. doi:10.1186/1471-2156-8-58
  • Zondervan KT, Cardon LR. Designing candidate gene and genome-wide case-control association studies. Nat Protoc. 2007;2(10):2492–2501. doi:10.1038/nprot.2007.366
  • Spencer CC, et al. Designing genome-wide association studies: sample size, power, imputation, and the choice of genotyping chip. PLoS Genet. 2009;5(5):e1000477.
  • Wu Z, Zhao H, Walsh B. Statistical power of model selection strategies for genome-wide association studies. PLoS Genet. 2009;5(7):e1000582. doi:10.1371/journal.pgen.1000582
  • Park J-H, Wacholder S, Gail MH, et al. Estimation of effect size distribution from genome-wide association studies and implications for future discoveries. Nat Genet. 2010;42(7):570–575. doi:10.1038/ng.610
  • Hong EP, Park JW. Sample size and statistical power calculation in genetic association studies. Genomics Inform. 2012;10(2):117–122. doi:10.5808/GI.2012.10.2.117
  • Wu R, Tong C, Wang Z, et al. A conceptual framework for pharmacodynamic genome-wide association studies in pharmacogenomics. Drug Discov Today. 2011;16(19–20):884–890. doi:10.1016/j.drudis.2011.09.001
  • Hayes B. Overview of statistical methods for Genome-Wide Association Studies (GWAS). Methods Mol Biol. 2013;1019:149–169.
  • Carr DF, Bourgeois S, Chaponda M, et al. Genome-wide association study of nevirapine hypersensitivity in a sub-Saharan African HIV-infected population. J Antimicrob Chemother. 2017;72(4):1152–1162. doi:10.1093/jac/dkw545
  • Chantarangsu S, Mushiroda T, Mahasirimongkol S, et al. Genome-wide association study identifies variations in 6p21.3 associated with nevirapine-induced rash. Clin Infect Dis. 2011;53(4):341–348. doi:10.1093/cid/cir403
  • Reinhart JM, Motsinger-Reif A, Dickey A, et al. Genome-wide association study in immunocompetent patients with delayed hypersensitivity to sulfonamide antimicrobials. PLoS One. 2016;11(6):e0156000. doi:10.1371/journal.pone.0156000
  • Zhang F-R, Liu H, Irwanto A, et al. HLA-B*13:01 and the Dapsone Hypersensitivity Syndrome. N Engl J Med. 2013;369(17):1620–1628. doi:10.1056/NEJMoa1213096
  • Gueant J-L, Romano A, Cornejo-Garcia J-A, et al. HLA-DRA variants predict penicillin allergy in genome-wide fine-mapping genotyping. J Allergy Clin Immunol. 2015;135(1):253–259. doi:10.1016/j.jaci.2014.07.047
  • Cornejo-Garcia JA, Liou L-B, Blanca-López N, et al. Genome-wide association study in NSAID-induced acute urticaria/angioedema in Spanish and Han Chinese populations. Pharmacogenomics. 2013;14(15):1857–1869. doi:10.2217/pgs.13.166
  • Park BL, Kim T-H, Kim J-H, et al. Genome-wide association study of aspirin-exacerbated respiratory disease in a Korean population. Hum Genet. 2013;132(3):313–321. doi:10.1007/s00439-012-1247-2
  • Kim J-H, Park B-L, Cheong HS, et al. Genome-wide and follow-up studies identify CEP68 gene variants associated with risk of aspirin-intolerant asthma. PLoS One. 2010;5(11):e13818. doi:10.1371/journal.pone.0013818
  • Ueta M, Sotozono C, Nakano M, et al. Association between prostaglandin E receptor 3 polymorphisms and Stevens-Johnson syndrome identified by means of a genome-wide association study. J Allergy Clin Immunol. 2010;126(6):1218–25e10. doi:10.1016/j.jaci.2010.08.007
  • McCormack M, Urban TJ, Shianna KV, et al. Genome-wide mapping for clinically relevant predictors of lamotrigine- and phenytoin-induced hypersensitivity reactions. Pharmacogenomics. 2012;13(4):399–405. doi:10.2217/pgs.11.165
  • Su SC, Chen C-B, Chang W-C, et al. HLA Alleles and CYP2C9*3 as predictors of phenytoin hypersensitivity in East Asians. Clin Pharmacol Ther. 2019;105(2):476–485. doi:10.1002/cpt.1190
  • Jang HW, Kim SW, Cho Y-J, et al. GWAS identifies two susceptibility loci for lamotrigine-induced skin rash in patients with epilepsy. Epilepsy Res. 2015;115:88–94. doi:10.1016/j.eplepsyres.2015.05.014
  • Ozeki T, Mushiroda T, Yowang A, et al. Genome-wide association study identifies HLA-A*3101 allele as a genetic risk factor for carbamazepine-induced cutaneous adverse drug reactions in Japanese population. Hum Mol Genet. 2011;20(5):1034–1041. doi:10.1093/hmg/ddq537
  • McCormack M, Alfirevic A, Bourgeois S, et al. HLA-A*3101 and carbamazepine-induced hypersensitivity reactions in Europeans. N Engl J Med. 2011;364(12):1134–1143. doi:10.1056/NEJMoa1013297
  • Shen Y, Nicoletti P, Floratos A, et al. Genome-wide association study of serious blistering skin rash caused by drugs. Pharmacogenomics J. 2012;12(2):96–104. doi:10.1038/tpj.2010.84
  • Tohkin M, et al. A whole-genome association study of major determinants for allopurinol-related Stevens-Johnson syndrome and toxic epidermal necrolysis in Japanese patients. Pharmacogenomics J. 2013;13(1):60–69. doi:10.1038/tpj.2011.41
  • Fernandez CA, Smith C, Yang W, et al. Genome-wide analysis links NFATC2 with asparaginase hypersensitivity. Blood. 2015;126(1):69–75. doi:10.1182/blood-2015-02-628800
  • Nishino J, Ochi H, Kochi Y, et al. Sample size for successful genome-wide association study of major depressive disorder. Front Genet. 2018;9:227. doi:10.3389/fgene.2018.00227
  • Lee SH, Clark S, van der Werf JHJ. Estimation of genomic prediction accuracy from reference populations with varying degrees of relationship. PLoS One. 2017;12(12):e0189775. doi:10.1371/journal.pone.0189775
  • International HapMap C. A haplotype map of the human genome. Nature. 2005;437(7063):1299–1320.
  • Fadista J, Manning AK, Florez JC, et al. The (in)famous GWAS P-value threshold revisited and updated for low-frequency variants. Eur J Hum Genet. 2016;24(8):1202–1205. doi:10.1038/ejhg.2015.269
  • Klaewsongkram J, Sukasem C, Thantiworasit P, et al. Analysis of HLA-B allelic variation and IFN-gamma ELISpot responses in patients with severe cutaneous adverse reactions associated with drugs. J Allergy Clin Immunol Pract. 2019;7(1):219–227e4. doi:10.1016/j.jaip.2018.05.004
  • Watanabe H, Watanabe Y, Tashiro Y, et al. A docking model of dapsone bound to HLA-B*13:01 explains the risk of dapsone hypersensitivity syndrome. J Dermatol Sci. 2017;88(3):320–329. doi:10.1016/j.jdermsci.2017.08.007
  • Schäfer D, Brumen M, Dobovišek A, et al. Dynamic model of eicosanoid production with special reference to non-steroidal anti-inflammatory drug-triggered hypersensitivity. IET Systems Biology. 2015;9(5):204–215. doi:10.1049/iet-syb.2014.0037
  • Ammar R, Paton TA, Torti D, et al. Long read nanopore sequencing for detection of HLA and CYP2D6 variants and haplotypes [version 2; peer review: 2 approved]. F1000Research. 2015;4(17):17. doi:10.12688/f1000research.6037.2
  • Laver TW, et al. Pitfalls of haplotype phasing from amplicon-based long-read sequencing. Sci Rep. 2016;6:21746. doi:10.1038/srep21746
  • Ambardar S, Gowda M. High-resolution full-length HLA typing method using third generation (Pac-Bio SMRT) sequencing technology. Methods Mol Biol. 2018;1802:135–153.
  • Suzuki S, Ranade S, Osaki K, et al. Reference Grade Characterization of Polymorphisms in Full-Length HLA Class I and II genes with short-read sequencing on the ION PGM system and long-reads generated by single molecule, real-time sequencing on the pacbio platform. Front Immunol. 2018;9:2294. doi:10.3389/fimmu.2018.02294
  • Buermans HPJ, Vossen RHAM, Anvar SY, et al. Flexible and scalable full-length CYP2D6 long amplicon PacBio sequencing. Hum Mutat. 2017;38(3):310–316. doi:10.1002/humu.23166
  • Hripcsak G, Ryan PB, Duke JD, et al. Characterizing treatment pathways at scale using the OHDSI network. Proc Natl Acad Sci. 2016;113(27):7329–7336. doi:10.1073/pnas.1510502113
  • Dey S, Luo H, Fokoue A, et al. Predicting adverse drug reactions through interpretable deep learning framework. BMC Bioinform. 2018;19(S21):476. doi:10.1186/s12859-018-2544-0
  • Poudel DR, Acharya P, Ghimire S, et al. Burden of hospitalizations related to adverse drug events in the USA: a retrospective analysis from large inpatient database. Pharmacoepidemiol Drug Saf. 2017;26(6):635–641. doi:10.1002/pds.4184
  • Barbarino JM, Whirl-Carrillo M, Altman RB, et al. PharmGKB: a worldwide resource for pharmacogenomic information. WIREs Syst Biol Med. 2018;10(4):e1417. doi:10.1002/wsbm.1417
  • Davis AP, Grondin CJ, Johnson RJ, et al. The comparative toxicogenomics database: update 2019. Nucleic Acids Res. 2019;47(D1):D948–D954. doi:10.1093/nar/gky868
  • Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27–30. doi:10.1093/nar/28.1.27
  • Hecker N, et al. SuperTarget goes quantitative: update on drug-target interactions. Nucleic Acids Res. 2012;40(Database issue):D1113–D1117.
  • Ghattaoraya GS, et al. A web resource for mining HLA associations with adverse drug reactions: HLA-ADR. Database. 2016;2016.
  • Cai M-C, Xu Q, Pan Y-J, et al. ADReCS: an ontology database for aiding standardization and hierarchical classification of adverse drug reaction terms. Nucleic Acids Res. 2015;43(Database issue):D907–D913. doi:10.1093/nar/gku1066
  • Ji ZL, Han LY, Yap CW, et al. Drug ADVERSE Reaction Target Database (DART): proteins related to adverse drug reactions. Drug Safety. 2003;26(10):685–690. doi:10.2165/00002018-200326100-00002
  • Van der Auwera GA, et al. From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr Protoc Bioinformatics. 2013;43(1110):11.10.1–11.10.33.
  • Li H, Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv preprint arXiv:1303.3997, 2013.
  • Poplin R, Chang P-C, Alexander D, et al. A universal SNP and small-indel variant caller using deep neural networks. Nat Biotechnol. 2018;36(10):983–987. doi:10.1038/nbt.4235
  • Twist GP, Gaedigk A, Miller NA, et al. Erratum: constellation: a tool for rapid, automated phenotype assignment of a highly polymorphic pharmacogene, CYP2D6, from whole-genome sequences. Npj Genomic Med. 2017;2(1):16039. doi:10.1038/npjgenmed.2016.39
  • Chen X, et al., Accurate CYP2D6 genotyping using whole genome sequencing data. bioRxiv, 2020: p. 2020.
  • Numanagić I, Malikić S, Ford M, et al. Allelic decomposition and exact genotyping of highly polymorphic and structurally variant genes. Nat Commun. 2018;9(1):828. doi:10.1038/s41467-018-03273-1
  • Lee S-B, Wheeler MM, Thummel KE, et al. Calling star alleles with stargazer in 28 pharmacogenes with whole genome sequences. Clin Pharmacol Ther. 2019;106(6):1328–1337. doi:10.1002/cpt.1552
  • Boegel S, Löwer M, Schäfer M, et al. HLA typing from RNA-Seq sequence reads. Genome Med. 2012;4(12):102. doi:10.1186/gm403
  • Szolek A, Schubert B, Mohr C, et al. OptiType: precision HLA typing from next-generation sequencing data. Bioinformatics (Oxford, England). 2014;30(23):3310–3316. doi:10.1093/bioinformatics/btu548
  • Kawaguchi S, Higasa K, Shimizu M, et al. HLA-HD: an accurate HLA typing algorithm for next-generation sequencing data. Hum Mutat. 2017;38(7):788–797. doi:10.1002/humu.23230
  • Lee H, Kingsford C. Kourami: graph-guided assembly for novel human leukocyte antigen allele discovery. Genome Biol. 2018;19(1):16. doi:10.1186/s13059-018-1388-2
  • Boegel S, et al. In silico HLA typing using standard RNA-Seq sequence reads. In: Bugert P, editor. Molecular Typing of Blood Cell Antigens. New York: Springer New York; 2015:247–258.
  • McCarthy DJ, Humburg P, Kanapin A, et al. Choice of transcripts and software has a large effect on variant annotation. Genome Med. 2014;6(3):26. doi:10.1186/gm543
  • Jarvik GP, Browning BL. Consideration of cosegregation in the pathogenicity classification of genomic variants. Am J Human Genetics. 2016;98(6):1077–1081. doi:10.1016/j.ajhg.2016.04.003
  • Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genetics Med. 2015;17(5):405–424. doi:10.1038/gim.2015.30
  • Gaedigk A, Sangkuhl K, Whirl-Carrillo M, et al. Prediction of CYP2D6 phenotype from genotype across world populations. Genetics Med. 2017;19(1):69–76. doi:10.1038/gim.2016.80
  • Kim E-Y, Shin S-G, Shin J-G. Prediction and visualization of CYP2D6 genotype-based phenotype using clustering algorithms. Transl Clin Pharmacol. 2017;25(3):147–152. doi:10.12793/tcp.2017.25.3.147
  • McInnes G, et al. Transfer Learning Enables Prediction of CYP2D6 Haplotype Function. bioRxiv; 2020:684357.
  • van der Lee M, Allard WG, Bollen S, et al. Repurposing of diagnostic whole exome sequencing data of 1583 individuals for clinical pharmacogenetics. Clin Pharmacol Ther. 2020;107(3):617–627. doi:10.1002/cpt.1665
  • Srinivasan BS, Chen J, Cheng C, et al. Methods for analysis in pharmacogenomics: lessons from the Pharmacogenetics Research Network Analysis Group. Pharmacogenomics. 2009;10(2):243–251. doi:10.2217/14622416.10.2.243