187
Views
2
CrossRef citations to date
0
Altmetric
Original Research

Association of CYP3A5 Gene Polymorphisms and Amlodipine-Induced Peripheral Edema in Chinese Han Patients with Essential Hypertension

, , , , , , , , & show all
Pages 189-197 | Published online: 02 Feb 2021

References

  • Flynn JT, Pasko DA. Calcium channel blockers: pharmacology and place in therapy of pediatric hypertension. Pediatr Nephrol. 2000;15(3):302–316. doi:10.1007/s004670000480
  • Sica DA. Pharmacotherapy review: calcium channel blockers. J Clin Hypertens (Greenwich). 2006;8(1):53–56. doi:10.1111/j.1524-6175.2005.04140.x
  • Fares H, DiNicolantonio JJ, O’Keefe JH, Lavie CJ. Amlodipine in hypertension: a first-line agent with efficacy for improving blood pressure and patient outcomes. Open Heart. 2016;3(2):e000473. doi:10.1136/openhrt-2016-000473
  • Kala N, Babu S, Manjeu J, Aadivalavan A, Khan R. Allele-specific polymerase chain reaction for the detection of single nucleotide polymorphism in amlodipine-induced gingival enlargement. J Clin Pharm Ther. 2018;43(1):110–113. doi:10.1111/jcpt.12587
  • Makani H, Bangalore S, Romero J, et al. Peripheral edema associated with calcium channel blockers: incidence and withdrawal rate–a meta-analysis of randomized trials. J Hypertens. 2011;29(7):1270–1280. doi:10.1097/HJH.0b013e3283472643
  • Kes S, Caglar N, Canberk A, et al. Treatment of mild-to-moderate hypertension with calcium channel blockers: a multicentre comparison of once-daily nifedipine GITS with once-daily amlodipine. Curr Med Res Opin. 2003;19(3):226–237. doi:10.1185/030079903125001677
  • The ClinCalc DrugStats Database. Amlodipine drug usage statistics, United States; 2008–2018. Available from: https://clincalc.com/DrugStats/Drugs/Amlodipine. Accessed December 9, 2020.
  • Epstein BJ, Roberts ME. Managing peripheral edema in patients with arterial hypertension. Am J Ther. 2009;16(6):543–553. doi:10.1097/MJT.0b013e3181afbf9f
  • Messerli FH, Grossman E. Pedal edema–not all dihydropyridine calcium antagonists are created equal. Am J Hypertens. 2002;15(11):1019–1020. doi:10.1016/S0895-7061(02)03087-X
  • Bhatnagar V, Garcia EP, O’Connor DT, et al. CYP3A4 and CYP3A5 polymorphisms and blood pressure response to amlodipine among African-American men and women with early hypertensive renal disease. Am J Nephrol. 2010;31(2):95–103. doi:10.1159/000258688
  • Irvin MR, Lynch AI, Kabagambe EK, et al. Pharmacogenetic association of hypertension candidate genes with fasting glucose in the GenHAT study. J Hypertens. 2010;28(10):2076–2083. doi:10.1097/HJH.0b013e32833c7a4d
  • Sorensen IF, Vazquez AI, Irvin MR, et al. Pharmacogenetic effects of ‘candidate gene complexes’ on stroke in the GenHAT study. Pharmacogenet Genomics. 2014;24(11):556–563. doi:10.1097/FPC.0000000000000088
  • Kim KA, Park PW, Lee OJ, et al. Effect of CYP3A5*3 genotype on the pharmacokinetics and pharmacodynamics of amlodipine in healthy Korean subjects. Clin Pharmacol Ther. 2006;80(6):646–656. doi:10.1016/j.clpt.2006.09.009
  • Lu Y, Zhong H, Tang Q, et al. Construction and verification of CYP3A5 gene polymorphisms using a Saccharomyces cerevisiae expression system to predict drug metabolism. Mol Med Rep. 2017;15(4):1593–1600. doi:10.3892/mmr.2017.6214
  • Eichelbaum M, Burk O. CYP3A genetics in drug metabolism. Nat Med. 2001;7(3):285–287. doi:10.1038/85417
  • Zhu Y, Wang F, Li Q, et al. Amlodipine metabolism in human liver microsomes and roles of CYP3A4/5 in the dihydropyridine dehydrogenation. Drug Metab Dispos. 2014;42(2):245–249. doi:10.1124/dmd.113.055400
  • Katoh M, Nakajima M, Shimada N, Yamazaki H, Yokoi T. Inhibition of human cytochrome P450 enzymes by 1,4-dihydropyridine calcium antagonists: prediction of in vivo drug-drug interactions. Eur J Clin Pharmacol. 2000;55(11–12):843–852. doi:10.1007/s002280050706
  • Dorofeeva MN, Shikh EV, Sizova ZM, et al. Antihypertensive effect of amlodipine in co-administration with omeprazole in patients with hypertension and acid-related disorders: cytochrome P450-associated aspects. Pharmgenomics Pers Med. 2019;12:329–339. doi:10.2147/PGPM.S217725
  • Whirl-Carrillo M, McDonagh EM, Hebert JM, et al. Pharmacogenomics knowledge for personalized medicine. Clin Pharmacol Ther. 2012;92(4):414–417. doi:10.1038/clpt.2012.96
  • Gaedigk A, Ingelman-Sundberg M, Miller NA, et al. The pharmacogene variation (PharmVar) consortium: incorporation of the human cytochrome P450 (CYP) allele nomenclature database. Clin Pharmacol Ther. 2018;103(3):399–401. doi:10.1002/cpt.910
  • Lek M, Karczewski KJ, Minikel EV, et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016;536(7616):285–291. doi:10.1038/nature19057
  • Saiz-Rodriguez M, Almenara S, Navares-Gomez M, et al. Effect of the most relevant CYP3A4 and CYP3A5 polymorphisms on the pharmacokinetic parameters of 10 CYP3A substrates. Biomedicines. 2020;8(4):94. doi:10.3390/biomedicines8040094
  • Wojnowski L. Genetics of the variable expression of CYP3A in humans. Ther Drug Monit. 2004;26(2):192–199. doi:10.1097/00007691-200404000-00019
  • Kuehl P, Zhang J, Lin Y, et al. Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat Genet. 2001;27(4):383–391. doi:10.1038/86882
  • Min SI, Kim SY, Ahn SH, et al. CYP3A5 *1 allele: impacts on early acute rejection and graft function in tacrolimus-based renal transplant recipients. Transplantation. 2010;90(12):1394–1400. doi:10.1097/TP.0b013e3181fa93a4
  • Satoh S, Saito M, Inoue T, et al. CYP3A5 *1 allele associated with tacrolimus trough concentrations but not subclinical acute rejection or chronic allograft nephropathy in Japanese renal transplant recipients. Eur J Clin Pharmacol. 2009;65(5):473–481. doi:10.1007/s00228-008-0606-3
  • Zhang YP, Zuo XC, Huang ZJ, et al. CYP3A5 polymorphism, amlodipine and hypertension. J Hum Hypertens. 2014;28(3):145–149. doi:10.1038/jhh.2013.67
  • Huang Y, Wen G, Lu Y, et al. CYP3A4*1G and CYP3A5*3 genetic polymorphisms alter the antihypertensive efficacy of amlodipine in patients with hypertension following renal transplantation. Int J Clin Pharmacol Ther. 2017;55(2):109–118. doi:10.5414/CP202559
  • Uppsala Monitoring Centre. The use of the WHO-UMC system for standardised case causality assessment; 2018. Available from: https://www.who-umc.org/media/164200/who-umc-causality-assessment_new-logo.pdf. Accessed December 9, 2020.
  • Guo Z, Wang H, Tao J, et al. Development of multiple SNP markers panels affordable to breeders through genotyping by target sequencing (GBTS) in maize. Mol Breeding. 2019;39. doi:10.1007/s11032-019-0940-4
  • Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–2120. doi:10.1093/bioinformatics/btu170
  • Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics. 2010;26(5):589–595. doi:10.1093/bioinformatics/btp698
  • DePristo MA, Banks E, Poplin R, et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet. 2011;43(5):491–498. doi:10.1038/ng.806
  • Purcell S, Neale B, Todd-Brown K, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81(3):559–575. doi:10.1086/519795
  • Barrett JC, Fry B, Maller J, Daly MJ. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics. 2005;21(2):263–265. doi:10.1093/bioinformatics/bth457
  • Mas S, Gasso P, Alvarez S, et al. Pharmacogenetic predictors of angiotensin-converting enzyme inhibitor-induced cough: the role of ACE, ABO, and BDKRB2 genes. Pharmacogenet Genomics. 2011;21(9):531–538. doi:10.1097/FPC.0b013e328348c6db
  • Liu JE, Liu XY, Chen S, et al. SLCO1B1 521T > C polymorphism associated with rosuvastatin-induced myotoxicity in Chinese coronary artery disease patients: a nested case-control study. Eur J Clin Pharmacol. 2017;73(11):1409–1416. doi:10.1007/s00228-017-2318-z
  • Lamba JK, Lin YS, Schuetz EG, Thummel KE. Genetic contribution to variable human CYP3A-mediated metabolism. Adv Drug Deliv Rev. 2002;54(10):1271–1294. doi:10.1016/S0169-409X(02)00066-2
  • Xie HG, Wood AJ, Kim RB, Stein CM, Wilkinson GR. Genetic variability in CYP3A5 and its possible consequences. Pharmacogenomics. 2004;5(3):243–272. doi:10.1517/phgs.5.3.243.29833
  • Haas DM, Quinney SK, Clay JM, et al. Nifedipine pharmacokinetics are influenced by CYP3A5 genotype when used as a preterm labor tocolytic. Am J Perinatol. 2013;30(4):275–281. doi:10.1055/s-0032-1323590
  • Niioka T, Satoh S, Kagaya H, et al. Comparison of pharmacokinetics and pharmacogenetics of once- and twice-daily tacrolimus in the early stage after renal transplantation. Transplantation. 2012;94(10):1013–1019. doi:10.1097/TP.0b013e31826bc400
  • Mei J, Yan T, Huang Y, et al. A DAAM1 3ʹ-UTR SNP mutation regulates breast cancer metastasis through affecting miR-208a-5p-DAAM1-RhoA axis. Cancer Cell Int. 2019;19:55. doi:10.1186/s12935-019-0747-8
  • Saunders MA, Liang H, Li WH. Human polymorphism at microRNAs and microRNA target sites. Proc Natl Acad Sci U S A. 2007;104(9):3300–3305. doi:10.1073/pnas.0611347104
  • Wei R, Yang F, Urban TJ, et al. Impact of the interaction between 3ʹ-UTR SNPs and microRNA on the expression of human xenobiotic metabolism enzyme and transporter genes. Front Genet. 2012;3:248. doi:10.3389/fgene.2012.00248
  • Liu J, Ouyang Y, Chen D, et al. Donor and recipient P450 gene polymorphisms influence individual pharmacological effects of tacrolimus in Chinese liver transplantation patients. Int Immunopharmacol. 2018;57:18–24. doi:10.1016/j.intimp.2018.02.005
  • Wang P, Yin T, Ma HY, et al. Effects of CYP3A4/5 and ABCB1 genetic polymorphisms on carbamazepine metabolism and transport in Chinese patients with epilepsy treated with carbamazepine in monotherapy and bitherapy. Epilepsy Res. 2015;117:52–57. doi:10.1016/j.eplepsyres.2015.09.001
  • Hyland PL, Freedman ND, Hu N, et al. Genetic variants in sex hormone metabolic pathway genes and risk of esophageal squamous cell carcinoma. Carcinogenesis. 2013;34(5):1062–1068. doi:10.1093/carcin/bgt030