119
Views
3
CrossRef citations to date
0
Altmetric
Original Research

Influence of SLCO1B1 521T>C, UGT2B7 802C>T and IMPDH1 −106G>A Genetic Polymorphisms on Mycophenolic Acid Levels and Adverse Reactions in Chinese Autoimmune Disease Patients

, , , , , , , & show all
Pages 713-722 | Published online: 21 Jun 2021

References

  • Kawazoe M, Kaneko K, Yamada Z, et al. Efficacy of mycophenolate mofetil in Japanese patients with systemic lupus erythematosus. Clin Rheumatol. 2019:1–8.
  • Fialho SCMS, Bergamaschi S, Neves FS, et al. Mycophenolate mofetil in primary Sjögren’s syndrome: a treatment option for agranulocytosis. Rev Bras Reumatol. 2012;52(2):297–299. doi:10.1590/S0482-50042012000200013
  • Jones RB, Hiemstra TF, Ballarin J, et al. Mycophenolate mofetil versus cyclophosphamide for remission induction in ANCA-associated vasculitis: a randomised, non-inferiority trial. Ann Rheum Dis. 2019;78(3):399–405. doi:10.1136/annrheumdis-2018-214245
  • Fakih R, Matiello M, Chitnis T, et al. Efficacy and safety of mycophenolate mofetil in progressive multiple sclerosis patients. J Neurol. 2018;265(11):2688–2694. doi:10.1007/s00415-018-9050-1
  • Shaw LM, Korecka M, Venkataramanan R, et al. Mycophenolic acid pharmacodynamics and pharmacokinetics provide a basis for rational monitoring strategies. Am J Transpl. 2003;3(5):534–542. doi:10.1034/j.1600-6143.2003.00079.x
  • Sherwin CMT, Sagcal‐Gironella ACP, Fukuda T, et al. Development of population PK model with enterohepatic circulation for mycophenolic acid in patients with childhood‐onset systemic lupus erythematosus. Br J Clin Pharmacol. 2012;73(5):727–740. doi:10.1111/j.1365-2125.2011.04140.x
  • Bullingham RES, Nicholls AJ, Kamm BR. Clinical pharmacokinetics of mycophenolate mofetil. Clin Pharmacokinet. 1998;34(6):429–455. doi:10.2165/00003088-199834060-00002
  • Zahr N, Arnaud L, Marquet P, et al. Mycophenolic acid area under the curve correlates with disease activity in lupus patients treated with mycophenolate mofetil. Arthritis Rheum. 2010;62(7):2047–2054.
  • Riskalla M, Somers E, Fatica R, et al. Tolerability of mycophenolate mofetil in patients with systemic lupus erythematosus. J Rheumatol. 2003;30(7):1508–1512.
  • Mok CC. Mycophenolate mofetil for lupus nephritis: an update. Expert Rev Clin Immunol. 2015;11(12):1353–1364. doi:10.1586/1744666X.2015.1087314
  • Ling J, Shi J, Jiang Q, et al. Population pharmacokinetics of mycophenolic acid and its main glucuronide metabolite: a comparison between healthy Chinese and Caucasian subjects receiving mycophenolate mofetil. Eur J Clin Pharmacol. 2015;71(1):95–106. doi:10.1007/s00228-014-1771-1
  • Li P, Shuker N, Hesselink DA, et al. Do Asian renal transplant patients need another mycophenolate mofetil dose compared with Caucasian or African American patients? Transplant Int. 2014;27(10):994–1004. doi:10.1111/tri.12382
  • Shipkova M, Wieland E, Schütz E, et al. The acyl glucuronide metabolite of mycophenolic acid inhibits the proliferation of human mononuclear leukocytes. Transplant Proc. 2001;33(1–2):1080–1081. doi:10.1016/S0041-1345(00)02424-6
  • Bernard O, Tojcic J, Journault K, Perusse L, Guillemette C. Influence of nonsynonymous polymorphisms of UGT1A8 and UGT2B7 metabolizing enzymes on the formation of phenolic and acyl glucuronides of mycophenolic acid. Drug Metab Dispos. 2006;34(9):1539–1545. doi:10.1124/dmd.106.010553
  • Shipkova M, Armstrong VW, Weber L, et al.; German Study Group on Mycophenolate Mofetil Therapy in Pediatric Renal Transplant Recipients. Pharmacokinetics and protein adduct formation of the pharmacologically active acyl glucuronide metabolite of mycophenolic acid in pediatric renal transplant recipients. Ther Drug Monit. 2002;24(3):390–399. doi:10.1097/00007691-200206000-00011
  • Bernard O, Guillemette C. The main role of UGT1A9 in the hepatic metabolism of mycophenolic acid and the effects of naturally occurring variants. Drug Metab Dispos. 2004;32:775–778. doi:10.1124/dmd.32.8.775
  • Guo D, Pang LF, Han Y, et al. Polymorphisms of UGT1A9 and UGT2B7 influence the pharmacokinetics of mycophenolic acid after a single oral dose in healthy Chinese volunteers. Eur J Clin Pharmacol. 2013;69(4):843–849. doi:10.1007/s00228-012-1409-0
  • Zhang WX, Chen B, Jin Z, et al. Influence of uridine diphosphate (UDP)-glucuronosyltransferases and ABCC2 genetic polymorphisms on the pharmacokinetics of mycophenolic acid and its metabolites in Chinese renal transplant recipients. Xenobiotica. 2008;38(11):1422–1436. doi:10.1080/00498250802488585
  • Xie XC, Li J, Wang HY, et al. Associations of UDP-glucuronosyltransferases polymorphisms with mycophenolate mofetil pharmacokinetics in Chinese renal transplant patients. Acta Pharmacol Sin. 2015;36(5):644–650. doi:10.1038/aps.2015.7
  • Shipkova M, Armstrong VW, Oellerich M, et al. Acyl glucuronide drug metabolites: toxicological and analytical implications. Ther Drug Monit. 2003;25(1):1–16. doi:10.1097/00007691-200302000-00001
  • Batko B, Krawiec P, Osieleniec J, et al. Mycophenolate mofetil in the treatment of selected connective tissue diseases. Przegl Lek. 2013;70(9):724–729.
  • Ruiz J, Herrero MJ, Boso V, et al. Impact of single nucleotide polymorphisms (SNPs) on immunosuppressive therapy in lung transplantation. Int J Mol Sci. 2015;16(9):20168–20182. doi:10.3390/ijms160920168
  • Bouamar R, Hesselink DA, Van Schaik RH, et al. Mycophenolic acid-related diarrhea is not associated with polymorphisms in SLCO1B nor with ABCB1 in renal transplant recipients. Pharmacogenet Genomics. 2012;22(6):399–407. doi:10.1097/FPC.0b013e32834a8650
  • Miura M, Kagaya H, Satoh S, et al. Influence of drug transporters and UGT polymorphisms on pharmacokinetics of phenolic glucuronide metabolite of mycophenolic acid in Japanese renal transplant recipients. Ther Drug Monit. 2008;30(5):559–564. doi:10.1097/FTD.0b013e3181838063
  • Kagaya H, Niioka T, Saito M, et al. Effect of hepatic drug transporter polymorphisms on the pharmacokinetics of mycophenolic acid in patients with severe renal dysfunction before renal transplantation. Xenobiotica. 2017;47(10):916–922. doi:10.1080/00498254.2016.1235742
  • Miura M, Satoh S, Inoue K, et al. Influence of SLCO1B1, 1B3, 2B1 and ABCC2 genetic polymorphisms on mycophenolic acid pharmacokinetics in Japanese renal transplant recipients. Eur J Clin Pharmacol. 2007;63(12):1161–1169. doi:10.1007/s00228-007-0380-7
  • Varnell CD, Fukuda T, Kirby CL, et al. Mycophenolate mofetil‐related leukopenia in children and young adults following kidney transplantation: influence of genes and drugs. Pediatr Transplant. 2017;21(7):e13033. doi:10.1111/petr.13033
  • Michelon H, König J, Durrbach A, et al. SLCO1B1 genetic polymorphism influences mycophenolic acid tolerance in renal transplant recipients. Pharmacogenomics. 2010;11(12):1703–1713. doi:10.2217/pgs.10.132
  • Jacobson PA, Schladt D, Oetting WS, et al. Genetic determinants of mycophenolate related anemia and leukopenia following transplantation. Transplantation. 2011;91(3):309–316. doi:10.1097/TP.0b013e318200e971
  • Woillard JB, Picard N, Thierry A, et al. Associations between polymorphisms in target, metabolism, or transport proteins of mycophenolate sodium and therapeutic or adverse effects in kidney transplant patients. Pharmacogenet Genomics. 2014;24(5):256. doi:10.1097/FPC.0000000000000045
  • Pazik J, Ołdak M, Lewandowski Z, et al. Uridine diphosphate glucuronosyltransferase 2B7 variant p. His268Tyr as a predictor of kidney allograft early acute rejection. Transplant Proc. 2013;45(4):1516–1519. Elsevier. doi:10.1016/j.transproceed.2013.01.010
  • Bolin JP, Gohh R, Kandaswamy R, et al. Mycophenolic acid in kidney transplant patients with diabetes mellitus: does the formulation matter? Transplant Rev. 2011;25(3):117–123. doi:10.1016/j.trre.2010.12.003
  • Khan N, Binder L, Pantakani DV, et al. MPA modulates tight junctions’ permeability via Midkine/PI3K pathway in Caco-2 cells: a possible mechanism of leak-flux diarrhea in organ transplanted patients. Front Physiol. 2017:438. doi:10.3389/fphys.2017.00438
  • Yang JW, Lee PH, Hutchinson IV, et al. Genetic polymorphisms of MRP2 and UGT2B7 and gastrointestinal symptoms in renal transplant recipients taking mycophenolic acid. Ther Drug Monit. 2009;31(5):542–548. doi:10.1097/FTD.0b013e3181b1dd5e
  • Ohmann EL, Burckart GJ, Brooks MM, et al. Genetic polymorphisms influence mycophenolate mofetil–related adverse events in pediatric heart transplant patients. J Heart Lung Transplant. 2010;29(5):509–516. doi:10.1016/j.healun.2009.11.602
  • Ohmann EL, Burckart GJ, Chen Y, et al. Inosine 5ʹ-monophosphate dehydrogenase 1 haplotypes and association with mycophenolate mofetil gastrointestinal intolerance in pediatric heart transplant patients. Pediatr Transplant. 2010;14(7):891–895. doi:10.1111/j.1399-3046.2010.01367.x
  • Glander P, Hambach P, Braun KP, et al. Pre‐transplant inosine monophosphate dehydrogenase activity is associated with clinical outcome after renal transplantation. Am J Transpl. 2004;4(12):2045–2051. doi:10.1111/j.1600-6143.2004.00617.x
  • Gensburger O, Van Schaik RHN, Picard N, et al. Polymorphisms in type I and II inosine monophosphate dehydrogenase genes and association with clinical outcome in patients on mycophenolate mofetil. Pharmacogenet Genomics. 2010;20(9):537. doi:10.1097/FPC.0b013e32833d8cf5
  • Cao W, Xiao H, Lai X, et al. Genetic variations in the mycophenolate mofetil target enzyme are associated with acute GVHD risk after related and unrelated hematopoietic cell transplantation. Biol Blood Marrow Transplant. 2012;18(2):273–279. doi:10.1016/j.bbmt.2011.06.014
  • Kagaya H, Miura M, Saito M, et al. Correlation of IMPDH1 gene polymorphisms with subclinical acute rejection and mycophenolic acid exposure parameters on day 28 after renal transplantation. Basic Clin Pharmacol Toxicol. 2010;107(2):631–636. doi:10.1111/j.1742-7843.2010.00542.x
  • Gensburger O, Picard N, Marquet P. Effect of mycophenolate acyl-glucuronide on human recombinant type 2 inosine monophosphate dehydrogenase. Clin Chem. 2009;55(5):986–993. doi:10.1373/clinchem.2008.113936
  • Djebli N, Picard N, Rerolle JP, et al. Influence of the UGT2B7 promoter region and exon 2 polymorphisms and comedications on Acyl-MPAG production in vitro and in adult renal transplant patients. Pharmacogenet Genomics. 2007;17(5):321–330. doi:10.1097/FPC.0b013e32801430f8