110
Views
1
CrossRef citations to date
0
Altmetric
Original Research

Influence of SULT1A1*2 Polymorphism on Plasma Efavirenz Concentration in Thai HIV-1 Patients

ORCID Icon, , ORCID Icon, , ORCID Icon, , , , & show all
Pages 915-926 | Published online: 24 Jul 2021

References

  • Barusrux S, Urwijitaroon Y, Puapairoj C, Romphruk A, Sriwanitchrak P. Association of HCV and Treponema pallidum infection in HIV infected northeastern Thai male blood donors. J Med Assoc Thai. 1997;80(Suppl 1):S106–111.
  • Mocroft A, Ledergerber B, Katlama C, et al. Decline in the AIDS and death rates in the EuroSIDA study: an observational study. Lancet. 2003;362(9377):22–29. doi:10.1016/S0140-6736(03)13802-0
  • Clevenbergh P, Mouly S, Sellier P, et al. Improving HIV infection management using antiretroviral plasma drug levels monitoring: a clinician’s point of view. Curr HIV Res. 2004;2(4):309–321. doi:10.2174/1570162043351129
  • Fabbiani M, Bracciale L, Ragazzoni E, et al. Relationship between antiretroviral plasma concentration and emergence of HIV-1 resistance mutations at treatment failure. Infection. 2011;39(6):563–569. doi:10.1007/s15010-011-0183-8
  • Langmann P, Weissbrich B, Desch S, et al. Efavirenz plasma levels for the prediction of treatment failure in heavily pretreated HIV-1 infected patients. Eur J Med Res. 2002;7(7):309–314.
  • Marzolini C, Telenti A, Decosterd LA, Greub G, Biollaz J, Buclin T. Efavirenz plasma levels can predict treatment failure and central nervous system side effects in HIV-1-infected patients. Aids. 2001;15(1):71–75. doi:10.1097/00002030-200101050-00011
  • Pretorius E, Klinker H, Rosenkranz B. The role of therapeutic drug monitoring in the management of patients with human immunodeficiency virus infection. Ther Drug Monit. 2011;33(3):265–274. doi:10.1097/FTD.0b013e31821b42d1
  • Stahle L, Moberg L, Svensson JO, Sonnerborg A. Efavirenz plasma concentrations in HIV-infected patients: inter- and intraindividual variability and clinical effects. Ther Drug Monit. 2004;26(3):267–270. doi:10.1097/00007691-200406000-00008
  • Arab-Alameddine M, Di Iulio J, Buclin T, et al. Pharmacogenetics-based population pharmacokinetic analysis of efavirenz in HIV-1-infected individuals. Clin Pharmacol Ther. 2009;85(5):485–494. doi:10.1038/clpt.2008.271
  • Cabrera SE, Santos D, Valverde MP, et al. Influence of the cytochrome P450 2B6 genotype on population pharmacokinetics of efavirenz in human immunodeficiency virus patients. Antimicrob Agents Chemother. 2009;53(7):2791–2798. doi:10.1128/AAC.01537-08
  • Csajka C, Marzolini C, Fattinger K, et al. Population pharmacokinetics and effects of efavirenz in patients with human immunodeficiency virus infection. Clin Pharmacol Ther. 2003;73(1):20–30. doi:10.1067/mcp.2003.22
  • Gounden V, van Niekerk C, Snyman T, George JA. Presence of the CYP2B6 516G> T polymorphism, increased plasma Efavirenz concentrations and early neuropsychiatric side effects in South African HIV-infected patients. AIDS Res Ther. 2010;7:32. doi:10.1186/1742-6405-7-32
  • Sanchez A, Cabrera S, Santos D, et al. Population pharmacokinetic/pharmacogenetic model for optimization of efavirenz therapy in Caucasian HIV-infected patients. Antimicrob Agents Chemother. 2011;55(11):5314–5324. doi:10.1128/AAC.00194-11
  • Desta Z, Saussele T, Ward B, et al. Impact of CYP2B6 polymorphism on hepatic efavirenz metabolism in vitro. Pharmacogenomics. 2007;8(6):547–558. doi:10.2217/14622416.8.6.547
  • Sukasem C, Chamnanphon M, Koomdee N, et al. High plasma efavirenz concentration and CYP2B6 polymorphisms in Thai HIV-1 infections. Drug Metab Pharmacokinet. 2013;28(5):391–397. doi:10.2133/dmpk.DMPK-12-RG-120
  • Meng X, Yin K, Wang J, et al. Effect of CYP2B6 gene polymorphisms on efavirenz plasma concentrations in Chinese patients with HIV infection. PLoS One. 2015;10(6):e0130583. doi:10.1371/journal.pone.0130583
  • Ward BA, Gorski JC, Jones DR, Hall SD, Flockhart DA, Desta Z. The cytochrome P450 2B6 (CYP2B6) is the main catalyst of efavirenz primary and secondary metabolism: implication for HIV/AIDS therapy and utility of efavirenz as a substrate marker of CYP2B6 catalytic activity. J Pharmacol Exp Ther. 2003;306(1):287–300. doi:10.1124/jpet.103.049601
  • Ogburn ET, Jones DR, Masters AR, Xu C, Guo Y, Desta Z. Efavirenz primary and secondary metabolism in vitro and in vivo: identification of novel metabolic pathways and cytochrome P450 2A6 as the principal catalyst of efavirenz 7-hydroxylation. Drug Metab Dispos. 2010;38(7):1218–1229. doi:10.1124/dmd.109.031393
  • Mutlib AE, Chen H, Nemeth GA, et al. Identification and characterization of efavirenz metabolites by liquid chromatography/mass spectrometry and high field NMR: species differences in the metabolism of efavirenz. Drug Metab Dispos. 1999;27(11):1319–1333.
  • Bae SK, Jeong YJ, Lee C, Liu KH. Identification of human UGT isoforms responsible for glucuronidation of efavirenz and its three hydroxy metabolites. Xenobiotica. 2011;41(6):437–444. doi:10.3109/00498254.2011.551849
  • Belanger AS, Caron P, Harvey M, Zimmerman PA, Mehlotra RK, Guillemette C. Glucuronidation of the antiretroviral drug efavirenz by UGT2B7 and an in vitro investigation of drug-drug interaction with zidovudine. Drug Metab Dispos. 2009;37(9):1793–1796. doi:10.1124/dmd.109.027706
  • Sanchez-Martin A, Cabrera Figueroa S, Cruz R, et al. Gene-gene interactions between DRD3, MRP4 and CYP2B6 polymorphisms and its influence on the pharmacokinetic parameters of efavirenz in HIV infected patients. Drug Metab Pharmacokinet. 2016;31(5):349–355. doi:10.1016/j.dmpk.2016.06.001
  • Abla N, Chinn LW, Nakamura T, et al. The human multidrug resistance protein 4 (MRP4, ABCC4): functional analysis of a highly polymorphic gene. J Pharmacol Exp Ther. 2008;325(3):859–868. doi:10.1124/jpet.108.136523
  • Haas DW, Kwara A, Richardson DM, et al. Secondary metabolism pathway polymorphisms and plasma efavirenz concentrations in HIV-infected adults with CYP2B6 slow metabolizer genotypes. J Antimicrob Chemother. 2014;69(8):2175–2182. doi:10.1093/jac/dku110
  • Sarfo FS, Zhang Y, Egan D, et al. Pharmacogenetic associations with plasma efavirenz concentrations and clinical correlates in a retrospective cohort of Ghanaian HIV-infected patients. J Antimicrob Chemother. 2014;69(2):491–499. doi:10.1093/jac/dkt372
  • Elens L, Vandercam B, Yombi JC, Lison D, Wallemacq P, Haufroid V. Influence of host genetic factors on efavirenz plasma and intracellular pharmacokinetics in HIV-1-infected patients. Pharmacogenomics. 2010;11(9):1223–1234. doi:10.2217/pgs.10.94
  • Cortes CP, Siccardi M, Chaikan A, Owen A, Zhang G, la Porte CJ. Correlates of efavirenz exposure in Chilean patients affected with human immunodeficiency virus reveals a novel association with a polymorphism in the constitutive androstane receptor. Ther Drug Monit. 2013;35(1):78–83. doi:10.1097/FTD.0b013e318274197e
  • Sukasem C, Cressey TR, Prapaithong P, et al. Pharmacogenetic markers of CYP2B6 associated with efavirenz plasma concentrations in HIV-1 infected Thai adults. Br J Clin Pharmacol. 2012;74(6):1005–1012. doi:10.1111/j.1365-2125.2012.04288.x
  • Sukasem C, Manosuthi W, Koomdee N, et al. Low level of efavirenz in HIV-1-infected Thai adults is associated with the CYP2B6 polymorphism. Infection. 2014;42(3):469–474. doi:10.1007/s15010-013-0560-6
  • Gaedigk A, Twist GP, Leeder JS. CYP2D6, SULT1A1 and UGT2B17 copy number variation: quantitative detection by multiplex PCR. Pharmacogenomics. 2012;13(1):91–111. doi:10.2217/pgs.11.135
  • Charoenchokthavee W, Ayudhya DP, Sriuranpong V, Areepium N. Effects of SULT1A1 copy number variation on estrogen concentration and tamoxifen-associated adverse drug reactions in premenopausal Thai breast cancer patients: a preliminary study. Asian Pac J Cancer Prev. 2016;17(4):1851–1855. doi:10.7314/APJCP.2016.17.4.1851
  • Hebbring SJ, Adjei AA, Baer JL, et al. Human SULT1A1 gene: copy number differences and functional implications. Hum Mol Genet. 2007;16(5):463–470. doi:10.1093/hmg/ddl468
  • Gjerde J, Hauglid M, Breilid H, et al. Effects of CYP2D6 and SULT1A1 genotypes including SULT1A1 gene copy number on tamoxifen metabolism. Ann Oncol. 2008;19(1):56–61. doi:10.1093/annonc/mdm434
  • Tremmel R, Herrmann K, Engst W, et al. Methyleugenol DNA adducts in human liver are associated with SULT1A1 copy number variations and expression levels. Arch Toxicol. 2017;91(10):3329–3339. doi:10.1007/s00204-017-1955-4
  • Almal S, Padh H. SULT1A1 copy number variation: ethnic distribution analysis in an Indian population. Ann Hum Biol. 2017;44(7):663–666. doi:10.1080/03014460.2017.1376852
  • Yu X, Kubota T, Dhakal I, et al. Copy number variation in sulfotransferase isoform 1A1 (SULT1A1) is significantly associated with enzymatic activity in Japanese subjects. Pharmgenomics Pers Med. 2013;6:19–24. doi:10.2147/PGPM.S36579
  • Li G, Ye C, Shu X-O, et al. Abstract 2857: SULT1A1 gene copy number variations and functional polymorphism in relation to breast cancer risk. Cancer Res. 2010;70(8 Supplement):2857. doi:10.1158/0008-5472.CAN-09-3903
  • Suktitipat B, Naktang C, Mhuantong W, et al. Copy number variation in Thai population. PLoS One. 2014;9(8):e104355–e104355. doi:10.1371/journal.pone.0104355
  • Yang T-L, Chen X-D, Guo Y, et al. Genome-wide copy-number-variation study identified a susceptibility gene, UGT2B17, for osteoporosis. Am J Hum Genet. 2008;83(6):663–674. doi:10.1016/j.ajhg.2008.10.006
  • Mafune A, Hama T, Suda T, et al. Homozygous deletions of UGT2B17 modifies effects of smoking on TP53-mutations and relapse of head and neck carcinoma. BMC Cancer. 2015;15(1):205. doi:10.1186/s12885-015-1220-2
  • Angstadt AY, Berg A, Zhu J, et al. The effect of copy number variation in the phase II detoxification genes UGT2B17 and UGT2B28 on colorectal cancer risk. Cancer. 2013;119(13):2477–2485. doi:10.1002/cncr.28009
  • Chew S, Mullin BH, Lewis JR, Spector TD, Prince RL, Wilson SG. Homozygous deletion of the UGT2B17 gene is not associated with osteoporosis risk in elderly Caucasian women. Osteoporos Int. 2011;22(6):1981–1986. doi:10.1007/s00198-010-1405-0
  • Uddin M, Maksymowych WP, Inman R, et al. UGT2B17 copy number gain in a large ankylosing spondylitis multiplex family. BMC Genet. 2013;14:67. doi:10.1186/1471-2156-14-67
  • Desta Z, Gammal RS, Gong L, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for CYP2B6 and efavirenz-containing antiretroviral therapy. Clin Pharmacol Ther. 2019;106(4):726–733. doi:10.1002/cpt.1477
  • Yu X, Dhakal IB, Beggs M, et al. Functional genetic variants in the 3ʹ-untranslated region of sulfotransferase isoform 1A1 (SULT1A1) and their effect on enzymatic activity. Toxicol Sci. 2010;118(2):391–403. doi:10.1093/toxsci/kfq296
  • Jakobsson J, Ekstrom L, Inotsume N, et al. Large differences in testosterone excretion in Korean and Swedish men are strongly associated with a UDP-glucuronosyl transferase 2B17 polymorphism. J Clin Endocrinol Metab. 2006;91(2):687–693. doi:10.1210/jc.2005-1643
  • Carlini EJ, Raftogianis RB, Wood TC, et al. Sulfation pharmacogenetics: SULT1A1 and SULT1A2 allele frequencies in Caucasian, Chinese and African-American subjects. Pharmacogenetics. 2001;11(1):57–68. doi:10.1097/00008571-200102000-00007
  • Lee SJ, Kim WY, Jarrar YB, Kim YW, Lee SS, Shin JG. Single nucleotide polymorphisms in SULT1A1 and SULT1A2 in a Korean population. Drug Metab Pharmacokinet. 2013;28(4):372–377. doi:10.2133/dmpk.DMPK-12-SC-110
  • Ohtake E, Kakihara F, Matsumoto N, et al. Frequency distribution of phenol sulfotransferase 1A1 activity in platelet cells from healthy Japanese subjects. Eur J Pharm Sci. 2006;28(4):272–277. doi:10.1016/j.ejps.2006.02.008
  • Raftogianis RB, Wood TC, Otterness DM, Van Loon JA, Weinshilboum RM. Phenol sulfotransferase pharmacogenetics in humans: association of common SULT1A1 alleles with TS PST phenotype. Biochem Biophys Res Commun. 1997;239(1):298–304. doi:10.1006/bbrc.1997.7466
  • Raftogianis RB, Wood TC, Weinshilboum RM. Human phenol sulfotransferases SULT1A2 and SULT1A1: genetic polymorphisms, allozyme properties, and human liver genotype-phenotype correlations. Biochem Pharmacol. 1999;58(4):605–616. doi:10.1016/S0006-2952(99)00145-8
  • Saintot M, Malaveille C, Hautefeuille A, Gerber M. Interactions between genetic polymorphism of cytochrome P450-1B1, sulfotransferase 1A1, catechol-o-methyltransferase and tobacco exposure in breast cancer risk. Int J Cancer. 2003;107(4):652–657. doi:10.1002/ijc.11432
  • Sillanpaa P, Kataja V, Eskelinen M, et al. Sulfotransferase 1A1 genotype as a potential modifier of breast cancer risk among premenopausal women. Pharmacogenet Genomics. 2005;15(10):749–752. doi:10.1097/01.fpc.0000172240.34923.46
  • Shatalova EG, Walther SE, Favorova OO, Rebbeck TR, Blanchard RL. Genetic polymorphisms in human SULT1A1 and UGT1A1 genes associate with breast tumor characteristics: a case-series study. Breast Cancer Res. 2005;7(6):R909–R921. doi:10.1186/bcr1318
  • Hebbring SJ, Adjei AA, Baer JL, et al. Human SULT1A1 gene: copy number differences and functional implications. Hum Mol Genet. 2006;16(5):463–470.
  • Edavana VK, Yu X, Dhakal IB, et al. Sulfation of fulvestrant by human liver cytosols and recombinant SULT1A1 and SULT1E1. Pharmgenomics Pers Med. 2011;4:137–145. doi:10.2147/PGPM.S25418
  • Edavana VK, Dhakal IB, Yu X, Williams S, Kadlubar S. Sulfation of 4-hydroxy toremifene: individual variability, isoform specificity, and contribution to toremifene pharmacogenomics. Drug Metab Dispos. 2012;40(6):1210–1215. doi:10.1124/dmd.111.044040
  • Mukonzo JK, Owen JS, Ogwal-Okeng J, et al. Pharmacogenetic-based efavirenz dose modification: suggestions for an African population and the different CYP2B6 genotypes. PLoS One. 2014;9(1):e86919. doi:10.1371/journal.pone.0086919
  • Borst P, de Wolf C, van de Wetering K. Multidrug resistance-associated proteins 3, 4, and 5. Pflugers Arch. 2007;453(5):661–673. doi:10.1007/s00424-006-0054-9
  • Leggas M, Adachi M, Scheffer GL, et al. Mrp4 confers resistance to topotecan and protects the brain from chemotherapy. Mol Cell Biol. 2004;24(17):7612–7621. doi:10.1128/MCB.24.17.7612-7621.2004
  • Sanchez Martin A, Cabrera Figueroa S, Cruz Guerrero R, Hurtado LP, Hurle AD, Carracedo Alvarez A. Impact of pharmacogenetics on CNS side effects related to efavirenz. Pharmacogenomics. 2013;14(10):1167–1178. doi:10.2217/pgs.13.111
  • Sukasem C, Churdboonchart V, Chasombat S, et al. Surveillance of genotypic resistance mutations in chronic HIV-1 treated individuals after completion of the National Access to Antiretroviral Program in Thailand. Infection. 2007;35(2):81–88. doi:10.1007/s15010-007-6169-x
  • Sukasem C, Chamnanphon M, Koomdee N, et al. Pharmacogenetics and clinical biomarkers for subtherapeutic plasma efavirenz concentration in HIV-1 infected Thai adults. Drug Metab Pharmacokinet. 2014;29(4):289–295. doi:10.2133/dmpk.DMPK-13-RG-077
  • Metzger IF, Quigg TC, Epstein N, et al. Substantial effect of efavirenz monotherapy on bilirubin levels in healthy volunteers. Curr Ther Res Clin Exp. 2014;76:64–69. doi:10.1016/j.curtheres.2014.05.002
  • Yimer G, Amogne W, Habtewold A, et al. High plasma efavirenz level and CYP2B6*6 are associated with efavirenz-based HAART-induced liver injury in the treatment of naive HIV patients from Ethiopia: a prospective cohort study. Pharmacogenomics J. 2012;12(6):499–506. doi:10.1038/tpj.2011.34
  • Song R-H, Shao X-Q, Li L, Wang W, Zhang J-A. Copy number variations exploration of multiple genes in Graves’ disease. Medicine. 2017;96(4):e5866. doi:10.1097/MD.0000000000005866