206
Views
0
CrossRef citations to date
0
Altmetric
Original Research

Acetylator Status Among Newly Diagnosed and Recurrent Tuberculosis Patients from Kupang, Eastern Part of Indonesia

, , , , & ORCID Icon
Pages 737-744 | Published online: 22 Jun 2021

References

  • World Health Organization. Global Tuberculosis Report 2019. Geneva: World Health Organization; 2019.
  • Chakraborty S, Rhee KY. Tuberculosis Drug Development: history and Evolution of the Mechanism-Based Paradigm. Cold Spring Harb Perspect Med. 2015;5(8):a021147. doi:10.1101/cshperspect.a021147
  • Comstock GW, Golub JE, Panjabi R. Recurrent tuberculosis and its risk factors: adequately treated patients are still at high risk. Int J Tuberc Lung Dis. 2007;11(8):828–837.
  • Ramachandran G, Swaminathan S. Role of pharmacogenomics in the treatment of tuberculosis: a review. Pharmgenomics Pers Med. 2012;5:89–98. doi:10.2147/PGPM.S15454
  • Das RP, Majumder M, Roy B. Pharmacogenomics of anti-TB drugs-related hepatotoxicity. Pharmacogenomics. 2008;9(3):311–321. doi:10.2217/14622416.9.3.311
  • Werely CJ, Donald PR, van Helden PD. NAT2 polymorphisms and their influence on the pharmacology and toxicity of isoniazid in TB patients. Per Med. 2007;4(2):123–131. doi:10.2217/17410541.4.2.123
  • Wang P, Pradhan K, Zhong X-B, Ma X. Isoniazid metabolism and hepatotoxicity. Acta Pharm Sin B. 2016;6(5):384–392. doi:10.1016/j.apsb.2016.07.014
  • Pasipanodya JG, Srivastava S, Gumbo T. Meta-analysis of clinical studies supports the pharmacokinetic variability hypothesis for acquired drug resistance and failure of antituberculosis therapy. Clin Infect Dis. 2012;55(2):169–177. doi:10.1093/cid/cis353
  • Yuliwulandari R, Prayuni K, Susilowati RW, et al. NAT2 slow acetylator is associated with anti-tuberculosis drug-induced liver injury severity in Indonesian population. Pharmacogenomics. 2019;20(18):1303–1310. doi:10.2217/pgs-2019-0131
  • Yuliwulandari R, Susilowati RW, Razari I, Viyati K, Umniyati H, Prayuni K. N-acetyltransferase 2 polymorphism and acetylation profiles in Buginese ethnics of Indonesia. Ann Hum Genet. 2019;83(6):465–471. doi:10.1111/ahg.12341
  • Kementerian Kesehatan Republik Indonesia. Evaluasi Program Tuberkulosis 2018 Dan Upaya Menuju Eliminasi Tuberkulosis 2030. Jakarta: Kementerian Kesehatan Republik Indonesia; 2019.
  • Millet JP, Orcau À, De Olalla PG, Casals M, Rius C, Caylà JA. Tuberculosis recurrence and its associated risk factors among successfully treated patients. J Epidemiol Community Health. 2009;63(10):799–804. doi:10.1136/jech.2008.077560
  • Parwati I, van Crevel R, Sudiro M, et al. Mycobacterium tuberculosis population structures differ significantly on two Indonesian Islands. J Clin Microbiol. 2008;46(11):3639–3645. doi:10.1128/JCM.00605-08
  • Sahiratmadja E, Penggoam S, Maskoen AM, et al. Distribution of rs1801279 and rs1799930 polymorphisms in NAT2 gene among population in Kupang, Nusa Tenggara Timur, Indonesia. Indones Biomed J. 2018;10(1):56–61. doi:10.18585/inabj.v10i1.330
  • World Health Organization. Global Tuberculosis Report 2018. Geneva: World Health Organization; 2018.
  • Moosazadeh M, Bahrampour A, Nasehi M, Khanjani N. The incidence of recurrence of tuberculosis and its related factors in smear-positive pulmonary tuberculosis patients in Iran: a retrospective cohort study. Lung India. 2015;32(6):557–560. doi:10.4103/0970-2113.168113
  • Mutembo S, Mutanga JN, Musokotwane K, et al. Urban-rural disparities in treatment outcomes among recurrent TB cases in Southern Province, Zambia. BMC Infect Dis. 2019;19(1):1–8. doi:10.1186/s12879-019-4709-5
  • Hermans SM, Zinyakatira N, Caldwell J, Cobelens FGJ, Boulle A, Wood R. High Rates of Recurrent Tuberculosis Disease: a Population-level Cohort Study. Clin Infect Dis. 2020;3–10.
  • Zong Z, Huo F, Shi J, et al. Relapse versus reinfection of recurrent tuberculosis patients in a national tuberculosis specialized hospital in Beijing, China. Front Microbiol. 2018;9(8):1–8. doi:10.3389/fmicb.2018.01858
  • Korhonen V, Soini H, Vasankari T, Ollgren J, Smit PW, Ruutu P. Recurrent tuberculosis in Finland 1995–2013: a clinical and epidemiological cohort study. BMC Infect Dis. 2017;17(1):721. doi:10.1186/s12879-017-2818-6
  • Dooley KE, Lahlou O, Ghali I, et al. Risk factors for tuberculosis treatment failure, default, or relapse and outcomes of retreatment in Morocco. BMC Public Health. 2011;11(1):140. doi:10.1186/1471-2458-11-140
  • Sun Y, Harley D, Vally H, Sleigh A. Impact of multidrug resistance on tuberculosis recurrence and long-term outcome in China. PLoS One. 2017;12(1):1–11.
  • Bestrashniy JRBM, Nguyen VN, Nguyen TL, et al. Recurrence of tuberculosis among patients following treatment completion in eight provinces of Vietnam: a nested case-control study. Int J Infect Dis. 2018;74:31–37. doi:10.1016/j.ijid.2018.06.013
  • Igumnova V, Capligina V, Krams A, et al. Genotype and allele frequencies of isoniazid-metabolizing enzymes NAT2 and GSTM1 in Latvian tuberculosis patients. J Infect Chemother. 2016;22(7):472–477. doi:10.1016/j.jiac.2016.04.003
  • Toure A, Cabral M, Niang A, et al. Prevention of isoniazid toxicity by NAT2 genotyping in Senegalese tuberculosis patients. Toxicol Reports. 2016;3:826–831. doi:10.1016/j.toxrep.2016.10.004
  • Forestiero FJ, Cecon L, Hirata MH, et al. Relationship of NAT2, CYP2E1 and GSTM1/GSTT1 polymorphisms with mild elevation of liver enzymes in Brazilian individuals under anti-tuberculosis drug therapy. Clin Chim Acta. 2013;415:215–219. doi:10.1016/j.cca.2012.10.030
  • Cho HJ, Koh WJ, Ryu YJ, et al. Genetic polymorphisms of NAT2 and CYP2E1 associated with antituberculosis drug-induced hepatotoxicity in Korean patients with pulmonary tuberculosis. Tuberculosis. 2007;87(6):551–556. doi:10.1016/j.tube.2007.05.012
  • Chen B, Li JH, Xu YM, Wang J, Cao XM. The influence of NAT2 genotypes on the plasma concentration of isoniazid and acetylisoniazid in Chinese pulmonary tuberculosis patients. Clin Chim Acta. 2006;365(1):104–108. doi:10.1016/j.cca.2005.08.012
  • Susilowati RW, Prayuni K, Razari I, Bahri S, Yuliwulandari R. High frequency of NAT2 slow acetylator alleles in the Malay population of Indonesia: an awareness to the anti-tuberculosis drug induced liver injury and cancer. Med J Indones. 2017;26(1):7–13. doi:10.13181/mji.v26i1.1563
  • Mona S, Grunz KE, Brauer S, et al. Genetic admixture history of Eastern Indonesia as revealed by Y-chromosome and mitochondrial DNA analysis. Mol Biol Evol. 2009;26(8):1865–1877. doi:10.1093/molbev/msp097
  • Gomes SM, Bodner M, Souto L, et al. Human settlement history between Sunda and Sahul: a focus on East Timor (Timor-Leste) and the Pleistocenic mtDNA diversity. BMC Genomics. 2015;16(1):70. doi:10.1186/s12864-014-1201-x
  • Selinski S, Blaszkewicz M, Getzmann S, Golka K. N-Acetyltransferase 2: ultra-slow acetylators enter the stage. Arch Toxicol. 2015;89(12):2445–2447. doi:10.1007/s00204-015-1650-2
  • Unissa AN, Subbian S, Hanna LE, Selvakumar N. Overview on mechanisms of isoniazid action and resistance in Mycobacterium tuberculosis. Infect Genet Evol. 2016;45:474–492. doi:10.1016/j.meegid.2016.09.004
  • Unissa AN, Sukumar S, Hanna LE. The Role of N-Acetyl Transferases on Isoniazid Resistance from Mycobacterium tuberculosis and Human: an In Silico Approach. Tuberc Respir Dis (Seoul). 2017;80(3):255–264. doi:10.4046/trd.2017.80.3.255