194
Views
5
CrossRef citations to date
0
Altmetric
Original Research

Long Non-Coding RNAs Gene Variants as Molecular Markers for Diabetic Retinopathy Risk and Response to Anti-VEGF Therapy

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 997-1014 | Published online: 14 Aug 2021

References

  • Saeedi P, Petersohn I, Salpea P, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the international diabetes federation diabetes atlas, 9. Diabetes Res Clin Pract. 2019;157:107843. doi:10.1016/j.diabres.2019.107843
  • Hu Y, Chen Y, Ding L, et al. Pathogenic role of diabetes-induced PPAR-α down-regulation in microvascular dysfunction. Proc Natl Acad Sci U S A. 2013;110(38):15401–15406. doi:10.1073/pnas.1307211110
  • Xu E, Hu X, Li X, et al. Analysis of long non-coding RNA expression profiles in high-glucose treated vascular endothelial cells. BMC Endocr Disord. 2020;20(1):107. doi:10.1186/s12902-020-00593-6
  • Villeneuve LM, Natarajan R. The role of epigenetics in the pathology of diabetic complications. Am J Physiol Renal Physiol. 2010;299(1):F14–F25. doi:10.1152/ajprenal.00200.2010
  • Kong M, Xie K, Lv M, et al. Anti-inflammatory phytochemicals for the treatment of diabetes and its complications: lessons learned and future promise. Biomed Pharmacother. 2021;133:110975. doi:10.1016/j.biopha.2020.110975
  • Sathishkumar C, Prabu P, Mohan V, Balasubramanyam M. Linking a role of lncRNAs (long non-coding RNAs) with insulin resistance, accelerated senescence, and inflammation in patients with type 2 diabetes. Hum Genomics. 2018;12(1):41. doi:10.1186/s40246-018-0173-3
  • Fawzy MS, AlSel BTA, Ageeli EA, Al-Qahtani SA, Abdel-Daim MM, Toraih EA. Long non-coding RNA MALAT1 and microRNA-499a expression profiles in diabetic ESRD patients undergoing dialysis: a preliminary cross-sectional analysis. Arch Physiol Biochem. 2018;126(2):172–182. doi:10.1080/13813455.2018.1499119.
  • Raut SK, Khullar M. The big entity of new RNA world: long non-coding RNAs in microvascular complications of diabetes. Front Endocrinol (Lausanne). 2018;9:300. doi:10.3389/fendo.2018.00300
  • Fawzy MS, Abdelghany AA, Toraih EA, Mohamed AM. Circulating long non-coding RNAs H19 and GAS5 are associated with type 2 diabetes but not with diabetic retinopathy: a preliminary study. Bosn J Basic Med Sci. 2020;20(3):365–371. doi:10.17305/bjbms.2019.4533
  • Thomas AA, Feng B, Chakrabarti S. ANRIL: a regulator of VEGF in diabetic retinopathy. Invest Ophthalmol Vis Sci. 2017;58(1):470–480. doi:10.1167/iovs.16-20569
  • Yan B, Tao ZF, Li XM, Zhang H, Yao J, Jiang Q. Aberrant expression of long non-coding RNAs in early diabetic retinopathy. Invest Ophthalmol Vis Sci. 2014;55(2):941–951. doi:10.1167/iovs.13-13221
  • Biswas S, Thomas A, Feng B, Chen S, Gonder J, Chakrabarti S. Role of long non-coding RNA MALAT1 in the pathogenesis of diabetic retinopathy. Can J Diabetes. 2017;41(5):S8. doi:10.1016/j.jcjd.2017.08.027
  • Wang J, Gao X, Liu J, Zhang Y, Zhang T, Zhang H. Effect of intravitreal conbercept treatment on the expression of long noncoding RNAs and mRNAs in proliferative diabetic retinopathy patients. Acta Ophthalmol. 2019;97(6):e902–e912. doi:10.1111/aos.14083
  • Toraih EA, Abdelghany AA, Abd El Fadeal NM, Al Ageeli E, Fawzy MS. Deciphering the role of circulating lncRNAs: RNCR2, NEAT2, CDKN2B-AS1, and PVT1 and the possible prediction of anti-VEGF treatment outcomes in diabetic retinopathy patients. Graefes Arch Clin Exp Ophthalmol. 2019;257(9):1897–1913. doi:10.1007/s00417-019-04409-9
  • Altshuler D, Lo Turco JJ, Rush J, Cepko C. Taurine promotes the differentiation of a vertebrate retinal cell type in vitro. Development. 1993;119(4):1317–1328. doi:10.1242/dev.119.4.1317
  • Young TL, Matsuda T, Cepko CL. The non-coding RNA taurine upregulated gene 1 is required for differentiation of the murine retina. Curr Biol. 2005;15(6):501–512. doi:10.1016/j.cub.2005.02.027
  • Rapicavoli NA, Blackshaw S. New meaning in the message: non-coding RNAs and their role in retinal development. Dev Dyn. 2009;238(9):2103–2114. doi:10.1002/dvdy.21844
  • Yan HY, Bu SZ, Zhou WB, Mai YF. TUG1 promotes diabetic atherosclerosis by regulating proliferation of endothelial cells via Wnt pathway. Eur Rev Med Pharmacol Sci. 2018;22(20):6922–6929.
  • Yu B, Wang S. Angio-LncRs: lncRNAs that regulate angiogenesis and vascular disease. Theranostics. 2018;8(13):3654–3675. doi:10.7150/thno.26024
  • Yan B, Yao J, Liu JY, et al. lncRNA-MIAT regulates microvascular dysfunction by functioning as a competing endogenous RNA. Circ Res. 2015;116(7):1143–1156. doi:10.1161/CIRCRESAHA.116.305510
  • Eißmann M, Gutschner T, Hämmerle M, et al. Loss of the abundant nuclear non-coding RNA MALAT1 is compatible with life and development. RNA Biol. 2012;9(8):1076–1087. doi:10.4161/rna.21089
  • Vorotyntseva MI, Frosin VH. [Classification of medical sterilizers and terminology]. Med Tekh. 1972;1972(2):33–37. [ Amharic]
  • Liu JY, Yao J, Li XM, et al. Pathogenic role of lncRNA-MALAT1 in endothelial cell dysfunction in diabetes mellitus. Cell Death Dis. 2014;5(10):e1506. doi:10.1038/cddis.2014.466
  • Zou ZQ, Xu J, Li L, Han YS. Down-regulation of SENCR promotes smooth muscle cells proliferation and migration in db/db mice through up-regulation of FoxO1 and TRPC6. Biomed Pharmacother. 2015;74:35–41. doi:10.1016/j.biopha.2015.06.009
  • Boulberdaa M, Scott E, Ballantyne M, et al. A role for the long noncoding RNA SENCR in commitment and function of endothelial cells. Mol Ther. 2016;24(5):978–990. doi:10.1038/mt.2016.41
  • Bell RD, Long X, Lin M, et al. Identification and initial functional characterization of a human vascular cell-enriched long non-coding RNA. Arterioscler Thromb Vasc Biol. 2014;34(6):1249–1259. doi:10.1161/ATVBAHA.114.303240
  • Awata T, Yamashita H, Kurihara S, et al. A genome-wide association study for diabetic retinopathy in a Japanese population: potential association with a long intergenic non-coding RNA. PLoS One. 2014;9(11):e111715. doi:10.1371/journal.pone.0111715
  • Leung A, Natarajan R. Long noncoding RNAs in diabetes and diabetic complications. Antioxid Redox Signal. 2018;29(11):1064–1073. doi:10.1089/ars.2017.7315
  • Platania CB, Di Paola L, Leggio GM, et al. Molecular features of interaction between VEGFA and anti-angiogenic drugs used in retinal diseases: a computational approach. Front Pharmacol. 2015;6:248. doi:10.3389/fphar.2015.00248
  • Early Treatment Diabetic Retinopathy Study Research Group. Early treatment diabetic retinopathy study design and baseline patient characteristics. ETDRS report number 7. Ophthalmology. 1991;98(5Suppl):741–756. doi:10.1016/s0161-6420(13)38009-9
  • Abdelghany AA, Toraih EA, Mohamed AA, et al. Association of VEGF gene family variants with central macular thickness and visual acuity after aflibercept short-term treatment in diabetic patients: a pilot study. Ophthalmic Res. 2021;64(2):261–272. doi:10.1159/000511087
  • Toraih EA, Ismail NM, Toraih AA, Hussein MH, Fawzy MS. Precursor miR-499a variant but not miR-196a2 is associated with rheumatoid arthritis susceptibility in an Egyptian population. Mol Diagn Ther. 2016;20(3):279–295. doi:10.1007/s40291-016-0194-3
  • Saunders MA, Liang H, Li WH. Human polymorphism at microRNAs and microRNA target sites. Proc Natl Acad Sci U S A. 2007;104(9):3300–3305. doi:10.1073/pnas.0611347104
  • Voight BF, Kudaravalli S, Wen X, Pritchard JK. A map of recent positive selection in the human genome. PLoS Biol. 2006;4(3):e72. doi:10.1371/journal.pbio.0040072
  • Jiang Q, Lyu XM, Yuan Y, Wang L. Plasma. Biosci Rep. 2017;37(2). doi:10.1042/BSR20160589
  • Shaker OG, Abdelaleem OO, Mahmoud RH, et al. Diagnostic and prognostic role of serum miR-20b, miR-17-3p, HOTAIR, and MALAT1 in diabetic retinopathy. IUBMB Life. 2019;71(3):310–320. doi:10.1002/iub.1970
  • Duan J, Shen T, Dong H, Han S, Li G. Association of the expression levels of long-chain noncoding RNA TUG1 and its gene polymorphisms with knee osteoarthritis. Genet Test Mol Biomarkers. 2021;25(2):102–110. doi:10.1089/gtmb.2020.0208
  • Jaé N, Dimmeler S. Long non-coding RNAs in diabetic retinopathy. Circ Res. 2015;116(7):1104–1106. doi:10.1161/CIRCRESAHA.115.306051
  • Gong Q, Su G. Roles of miRNAs and long non-coding RNAs in the progression of diabetic retinopathy. Biosci Rep. 2017;37(6). doi:10.1042/BSR20171157
  • Zhang J, Chen M, Chen J, et al. Long non-coding RNA MIAT acts as a biomarker in diabetic retinopathy by absorbing. Biosci Rep. 2017;37(2):BSR20170036. doi:10.1042/BSR20170036
  • Michalik KM, You X, Manavski Y, et al. Long non-coding RNA MALAT1 regulates endothelial cell function and vessel growth. Circ Res. 2014;114(9):1389–1397. doi:10.1161/CIRCRESAHA.114.303265
  • Puthanveetil P, Chen S, Feng B, Gautam A, Chakrabarti S. Long non-coding RNA MALAT1 regulates hyperglycaemia induced inflammatory process in the endothelial cells. J Cell Mol Med. 2015;19(6):1418–1425. doi:10.1111/jcmm.12576
  • Hrdlickova B, de Almeida RC, Borek Z, Withoff S. Genetic variation in the non-coding genome: involvement of micro-RNAs and long non-coding RNAs in disease. Biochim Biophys Acta. 2014;1842(10):1910–1922. doi:10.1016/j.bbadis.2014.03.011
  • Miyagawa R, Tano K, Mizuno R, et al. Identification of cis- and trans-acting factors involved in the localization of MALAT-1 non-coding RNA to nuclear speckles. RNA. 2012;18(4):738–751. doi:10.1261/rna.028639.111
  • Gacche RN, Meshram RJ. Angiogenic factors as potential drug target: efficacy and limitations of anti-angiogenic therapy. Biochim Biophys Acta. 2014;1846(1):161–179. doi:10.1016/j.bbcan.2014.05.002
  • Bowler E, Oltean S. Alternative Splicing in Angiogenesis. Int J Mol Sci. 2019;20(9):2067. doi:10.3390/ijms20092067
  • Wang JZ, Xiang JJ, Wu LG, et al. A genetic variant in long non-coding RNA MALAT1 associated with survival outcome among patients with advanced lung adenocarcinoma: a survival cohort analysis. BMC Cancer. 2017;17(1):167. doi:10.1186/s12885-017-3151-6
  • Bomba L, Walter K, Soranzo N. The impact of rare and low-frequency genetic variants in common disease. Genome Biol. 2017;18(1):77. doi:10.1186/s13059-017-1212-4