193
Views
1
CrossRef citations to date
0
Altmetric
Original Research

Genetic and Non-Genetic Factors Impact on INR Normalization in Preprocedural Warfarin Management

ORCID Icon, , ORCID Icon, ORCID Icon, , , , , & ORCID Icon show all
Pages 1069-1080 | Published online: 28 Aug 2021

References

  • Ansell J, Hirsh J, Hylek E, Jacobson A, Crowther M, Palareti G. Pharmacology and management of the vitamin K antagonists: American College of Chest Physicians evidence-based clinical practice guidelines. Chest. 2008;133(6Suppl):160S–198S.
  • Elewa H, Alhaddad A, Al-Rawi S, Nounou A, Mahmoud H, Singh R. Trends in oral anticoagulant use in Qatar: a 5-year experience. J Thromb Thrombolysis. 2017;43(3):411–416. doi:10.1007/s11239-017-1474-4
  • Chang C, Hoyos M, Owusu Y, Elewa H. Direct oral anticoagulant use in atypical thrombosis-related conditions. Ann Pharmacother. 2018;52(2):185–197. doi:10.1177/1060028017731850
  • Jones M, McEwan P, Morgan CL, Peters JR, Goodfellow J, Currie CJ. Evaluation of the pattern of treatment, level of anticoagulation control, and outcome of treatment with warfarin in patients with non-valvar atrial fibrillation: a record linkage study in a large British population. Heart. 2005;91(4):472–477. doi:10.1136/hrt.2004.042465
  • Kim JH, Song YB, Shin DH, et al. How well does the target INR level maintain in warfarin-treated patients with non-valvular atrial fibrillation? Yonsei Med J. 2009;50(1):83–88. doi:10.3349/ymj.2009.50.1.83
  • White RH, McKittrick T, Hutchinson R, Twitchell J. Temporary discontinuation of Warfarin therapy: changes in the international normalized ratio. Ann Intern Med. 1995;122(1):40–42. doi:10.7326/0003-4819-122-1-199501010-00006
  • Kovacs MJ, Kearon C, Rodger M, et al. Single-arm study of bridging therapy with low-molecular-weight heparin for patients at risk of arterial embolism who require temporary interruption of warfarin. Circulation. 2004;110(12):1658–1663. doi:10.1161/01.CIR.0000142859.77578.C9
  • Spyropoulos AC, Turpie AG, Dunn AS, et al. Clinical outcomes with unfractionated heparin or low-molecular-weight heparin as bridging therapy in patients on long-term oral anticoagulants: the REGIMEN registry. J Thromb Haemost. 2006;4(6):1246–1252. doi:10.1111/j.1538-7836.2006.01908.x
  • Pengo V, Cucchini U, Denas G, et al. Standardized low-molecular-weight heparin bridging regimen in outpatients on oral anticoagulants undergoing invasive procedure or surgery: an inception cohort management study. Circulation. 2009;119(22):2920–2927. doi:10.1161/CIRCULATIONAHA.108.823211
  • Douketis JD, Spyropoulos AC, Spencer FA, et al. Perioperative management of antithrombotic therapy: antithrombotic therapy and prevention of thrombosis, 9th ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest. 2012;141(2Suppl):e326S–e350S. doi:10.1378/chest.11-2298
  • O’Reilly RA. Studies on the optical enantiomorphs of warfarin in man. Clin Pharmacol Ther. 1974;16(2):348–354. doi:10.1002/cpt1974162348
  • Rettie AE, Korzekwa KR, Kunze KL, et al. Hydroxylation of warfarin by human cDNA-expressed cytochrome P-450: a role for P-4502C9 in the etiology of (S)-warfarin-drug interactions. Chem Res Toxicol. 1992;5(1):54–59. doi:10.1021/tx00025a009
  • Kaminsky LS, Zhang ZY. Human P450 metabolism of warfarin. Pharmacol Ther. 1997;73(1):67–74. doi:10.1016/S0163-7258(96)00140-4
  • Garcia DA, Ageno W, Libby EN, Bibb J, Douketis J, Crowther MA. Perioperative anticoagulation for patients with mechanical heart valves: a survey of current practice. J Thromb Thrombolysis. 2004;18(3):199–203. doi:10.1007/s11239-005-0346-5
  • Stubbins MJ, Harries LW, Smith G, Tarbit MH, Wolf CR. Genetic analysis of the human cytochrome P450 CYP2C9 locus. Pharmacogenetics. 1996;6(5):429–439. doi:10.1097/00008571-199610000-00007
  • Caudle KE, Dunnenberger HM, Freimuth RR, et al. Standardizing terms for clinical pharmacogenetic test results: consensus terms from the Clinical Pharmacogenetics Implementation Consortium (CPIC). Genet Med. 2017;19(2):215–223. doi:10.1038/gim.2016.87
  • Caldwell MD, Awad T, Johnson JA, et al. CYP4F2 genetic variant alters required warfarin dose. Blood. 2008;111(8):4106–4112. doi:10.1182/blood-2007-11-122010
  • Bader LA, Elewa H. The impact of genetic and non-genetic factors on warfarin dose prediction in MENA region: a systematic review. PLoS One. 2016;11(12):e0168732. doi:10.1371/journal.pone.0168732
  • Suttie JW. The biochemical basis of warfarin therapy. Adv Exp Med Biol. 1987;214:3–16.
  • Bader L, Mahfouz A, Kasem M, et al. The effect of genetic and nongenetic factors on warfarin dose variability in Qatari population. Pharmacogenomics J. 2020;20(2):277–284. doi:10.1038/s41397-019-0116-y
  • Gammal RS, Court MH, Haidar CE, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for UGT1A1 and Atazanavir Prescribing. Clin Pharmacol Ther. 2016;99(4):363–369. doi:10.1002/cpt.269
  • Nutescu EA. Oral anticoagulant therapies: balancing the risks. Am J Health Syst Pharm. 2013;70(10 Suppl 1):S3–11. doi:10.2146/ajhp130040
  • dbSNP Short Genetic Variations; rs3093233; Factor VII; [ cited July 19, 2019]. NIH; National Library of Medicine. Available from: https://www.ncbi.nlm.nih.gov/snp/rs3093233. Accessed August 16, 2021.
  • dbSNP Short Genetic Variations; rs3093229; Factor VII; 2019 [ cited July 19, 2019]. NIH; National Library of Medicine. Available from: https://www.ncbi.nlm.nih.gov/snp/rs3093229. Accessed August 16, 2021.
  • D’Ambrosio RL, D’Andrea G, Cappucci F, et al. Polymorphisms in factor II and factor VII genes modulate oral anticoagulation with warfarin. Haematologica. 2004;89(12):1510–1516.
  • Aquilante CL, Langaee TY, Lopez LM, et al. Influence of coagulation factor, vitamin K epoxide reductase complex subunit 1, and cytochrome P450 2C9 gene polymorphisms on warfarin dose requirements. Clin Pharmacol Ther. 2006;79(4):291–302. doi:10.1016/j.clpt.2005.11.011
  • Schelleman H, Chen J, Chen Z, et al. Dosing algorithms to predict warfarin maintenance dose in Caucasians and African Americans. Clin Pharmacol Ther. 2008;84(3):332–339. doi:10.1038/clpt.2008.101
  • Abohelaika S, Wynne H, Avery P, Kamali F. Influence of CYP2C9 polymorphism on the fall in international normalized ratio in patients interrupting warfarin therapy before elective surgery. J Thromb Haemost. 2015;13(8):1436–1440. doi:10.1111/jth.13014
  • Abohelaika S, Wynne H, Avery P, Kampouraki E, Kamali F. Effect of genetic and patient factors on warfarin pharmacodynamics following warfarin withdrawal: implications for patients undergoing surgery. Thromb Res. 2018;171:167–170. doi:10.1016/j.thromres.2018.09.064
  • Burmester JK, Berg RL, Schmelzer JR, Mazza JJ, Yale SH. Factors that affect rate of INR decline after warfarin discontinuation. WMJ. 2015;114(1):16–20.
  • Chartrungsan A, Laksanabunsong P, Nimmannit A, et al. Comparison of temporary interruption of Warfarin therapy for 3 and 5 days before surgery in Thailand: a randomized controlled trial. Siriraj Med J. 2017;65(3):69–72.
  • Herman D, Locatelli I, Grabnar I, et al. Influence of CYP2C9 polymorphisms, demographic factors and concomitant drug therapy on warfarin metabolism and maintenance dose. Pharmacogenomics J. 2005;5(3):193–202. doi:10.1038/sj.tpj.6500308
  • Kadian-Dodov DL, van der Zee SA, Scott SA, et al. Warfarin pharmacogenetics: a controlled dose-response study in healthy subjects. Vasc Med. 2013;18(5):290–297. doi:10.1177/1358863X13503193
  • Takahashi H, Kashima T, Nomizo Y, et al. Metabolism of warfarin enantiomers in Japanese patients with heart disease having different CYP2C9 and CYP2C19 genotypes. Clin Pharmacol Ther. 1998;63(5):519–528. doi:10.1016/S0009-9236(98)90103-5
  • States LotA. Members of league of the Arab States; [ cited February 13, 2021]. Available from: http://www.leagueofarabstates.net/ar/aboutlas/Pages/CountryData.aspx. Accessed August 16, 2021.
  • Wilson SJ, Wells PS, Kovacs MJ, et al. Comparing the quality of oral anticoagulant management by anticoagulation clinics and by family physicians: a randomized controlled trial. Cmaj. 2003;169(4):293–298.
  • Invitrogen. PureLink® genomic DNA kits for purification of genomic DNA; [ cited October 17, 2019]. Available from: https://tools.thermofisher.com/content/sfs/manuals/purelink_genomic_man.pdf. Accessed August 16, 2021.
  • Genotek D. Laboratory protocol for manual purification of DNA from 0.5 mL of sample; [ cited October 17, 2019]. Available from: http://www.dnagenotek.com/US/pdf/PD-PR-006.pdf. Accessed August 16, 2021.
  • Scientific TF. NanoDrop 2000/2000c spectrophotometer V1.0 user manual. 2021:3.
  • Soper DS. A-priori sample size calculator for multiple regression; 2019 [ cited July 10, 2019]. Available from: http://www.danielsoper.com/statcalc. Accessed August 16, 2021.
  • Rettie AE, Wienkers LC, Gonzalez FJ, Trager WF, Korzekwa KR. Impaired (S)-warfarin metabolism catalysed by the R144C allelic variant of CYP2C9. Pharmacogenetics. 1994;4(1):39–42. doi:10.1097/00008571-199402000-00005
  • Linder MW. Genetic mechanisms for hypersensitivity and resistance to the anticoagulant Warfarin. Clin Chim Acta. 2001;308(1–2):9–15. doi:10.1016/S0009-8981(01)00420-X
  • dbSNP. dbSNP short genetic variations; 2020 [ cited February 27, 2021]. Available from: https://www.ncbi.nlm.nih.gov/snp/rs1799853#frequency_tab. Accessed August 16, 2021.
  • Sivadas A, Sharma P, Scaria V. Landscape of warfarin and clopidogrel pharmacogenetic variants in Qatari population from whole exome datasets. Pharmacogenomics. 2016;17(17):1891–1901. doi:10.2217/pgs-2016-0130
  • Shahin MH, Khalifa SI, Gong Y, et al. Genetic and nongenetic factors associated with warfarin dose requirements in Egyptian patients. Pharmacogenet Genomics. 2011;21(3):130–135. doi:10.1097/FPC.0b013e3283436b86
  • dbSNP. CYP4F2 (rs2108622); 2020 [ cited February 27, 2021]. Available from: https://www.ncbi.nlm.nih.gov/snp/rs2108622#frequency_tab. Accessed August 16, 2021.
  • dbSNP. VKORC1 (rs9923231); 2021 [ cited February 27, 2021]. Available from: https://www.ncbi.nlm.nih.gov/snp/rs9923231#frequency_tab. Accessed August 16, 2021.
  • Mazza R. Occupation during and after the war (Middle East) encyclopedia: encyclopedia; 2017 [ cited February 27, 2021]. Available from: https://encyclopedia.1914-1918-online.net/article/occupation_during_and_after_the_war_middle_east. Accessed August 16, 2021.
  • Al-Eitan LN, Almasri AY, Al-Habahbeh SO. Effects of coagulation factor VII polymorphisms on warfarin sensitivity and responsiveness in Jordanian cardiovascular patients during the initiation and maintenance phases of warfarin therapy. Pharmgenomics Pers Med. 2019;12:1–8.
  • dbSNP. FVII (rs3093229): ncbi; 2021 [ cited February 27, 2021]. Available from: https://www.ncbi.nlm.nih.gov/snp/rs3093229#frequency_tab. Accessed August 16, 2021.
  • Holbrook AM, Pereira JA, Labiris R, et al. Systematic overview of warfarin and its drug and food interactions. Arch Intern Med. 2005;165(10):1095–1106. doi:10.1001/archinte.165.10.1095
  • Shehab N, Sperling LS, Kegler SR, Budnitz DS. National estimates of emergency department visits for hemorrhage-related adverse events from clopidogrel plus aspirin and from warfarin. Arch Intern Med. 2010;170(21):1926–1933. doi:10.1001/archinternmed.2010.407
  • Shrif NE, Won HH, Lee ST, et al. Evaluation of the effects of VKORC1 polymorphisms and haplotypes, CYP2C9 genotypes, and clinical factors on warfarin response in Sudanese patients. Eur J Clin Pharmacol. 2011;67(11):1119–1130. doi:10.1007/s00228-011-1060-1