137
Views
0
CrossRef citations to date
0
Altmetric
Original Research

Analysis of Very Important Pharmacogenomics Variants in the Chinese Lahu Population

, , , , , & show all
Pages 1275-1289 | Published online: 01 Oct 2021

References

  • Owen RP, Klein TE, Altman RB. The education potential of the pharmacogenetics and pharmacogenomics knowledge base (PharmGKB). Clin Pharmacol Ther. 2007;82(4):472–475. doi:10.1038/sj.clpt.6100332
  • Badary OA. Pharmacogenomics and COVID-19: clinical implications of human genome interactions with repurposed drugs. Pharmacogenomics J. 2021;21(3):275–284. doi:10.1038/s41397-021-00209-9
  • He Y, Yang H, Geng T, et al. Genetic polymorphisms of pharmacogenomic VIP variants in the lhoba population of southwest China. Int J Clin Exp Pathol. 2015;8(10):13293–13303.
  • Ma JD, Lee KC, Kuo GM. Clinical application of pharmacogenomics. J Pharm Pract. 2012;25(4):417–427. doi:10.1177/0897190012448309
  • Ventola CL. Role of pharmacogenomic biomarkers in predicting and improving drug response: part 1: the clinical significance of pharmacogenetic variants. P t. 2013;38(9):545–560.
  • Sacco RL, Kasner SE, Broderick JP, et al. An updated definition of stroke for the 21st century: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2013;44(7):2064–2089. doi:10.1161/STR.0b013e318296aeca
  • Yi X, Lin J, Zhou J, et al. The secondary prevention of stroke according to cytochrome P450 2C19 genotype in patients with acute large-artery atherosclerosis stroke. Oncotarget. 2018;9(25):17725–17734. doi:10.18632/oncotarget.24877
  • Kim GJ, Lee SY, Park JH, et al. Role of preemptive genotyping in preventing serious adverse drug events in South Korean patients. Drug Saf. 2017;40(1):65–80. doi:10.1007/s40264-016-0454-5
  • Guo F. Genetic polymorphism of 17 autosomal STR loci in the Lahu ethnic minority from Yunnan Province, Southwest China. Forensic Sci Int Genet. 2017;31:e52–e3. doi:10.1016/j.fsigen.2017.08.002
  • Singkorn O, Apidechkul T, Putsa B, et al. Factor associated with alcohol use among Lahu and Akha hill tribe youths, northern Thailand. Subst Abuse Treat Prev Policy. 2019;14(1):5. doi:10.1186/s13011-019-0193-6
  • Faul F, Erdfelder E, Lang AG, et al. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007;39(2):175–191. doi:10.3758/BF03193146
  • Gabriel S, Ziaugra L, Tabbaa D. SNP genotyping using the Sequenom massARRAY iPLEX platform. Curr Protoc Hum Genet. 2009;60. doi:10.1002/0471142905.hg0212s60
  • Thomas RK, Baker AC, Debiasi RM, et al. High-throughput oncogene mutation profiling in human cancer. Nat Genet. 2007;39(3):347–351. doi:10.1038/ng1975
  • Excoffier L, Laval G, Schneider S. Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform Online. 2007;1:47–50.
  • Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155(2):945–959. doi:10.1093/genetics/155.2.945
  • Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol. 2005;14(8):2611–2620. doi:10.1111/j.1365-294X.2005.02553.x
  • Chowbay B, Zhou S, Lee EJ. An interethnic comparison of polymorphisms of the genes encoding drug-metabolizing enzymes and drug transporters: experience in Singapore. Drug Metab Rev. 2005;37(2):327–378. doi:10.1081/DMR-28805
  • Otterness D, Szumlanski C, Lennard L, et al. Human thiopurine methyltransferase pharmacogenetics: gene sequence polymorphisms. Clin Pharmacol Ther. 1997;62(1):60–73. doi:10.1016/S0009-9236(97)90152-1
  • Schaeffeler E, Fischer C, Brockmeier D, et al. Comprehensive analysis of thiopurine S-methyltransferase phenotype-genotype correlation in a large population of German-Caucasians and identification of novel TPMT variants. Pharmacogenetics. 2004;14(7):407–417. doi:10.1097/01.fpc.0000114745.08559.db
  • Cooper SC, Ford LT, Berg JD, et al. Ethnic variation of thiopurine S-methyltransferase activity: a large, prospective population study. Pharmacogenomics. 2008;9(3):303–309. doi:10.2217/14622416.9.3.303
  • Hon YY, Fessing MY, C H PUI, et al. Polymorphism of the thiopurine S-methyltransferase gene in African-Americans. Hum Mol Genet. 1999;8(2):371–376. doi:10.1093/hmg/8.2.371
  • Jones CD, Smart C, Titus A, et al. Thiopurine methyltransferase activity in a sample population of black subjects in Florida. Clin Pharmacol Ther. 1993;53(3):348–353. doi:10.1038/clpt.1993.31
  • Cardoso de Carvalho D, Pereira Colares Leitão L, Mello Junior FAR, et al. Association between the TPMT*3C (rs1142345) polymorphism and the risk of death in the treatment of acute lymphoblastic leukemia in children from the Brazilian Amazon Region. Genes. 2020;11(10):1132. doi:10.3390/genes11101132
  • Yang JJ, Landier W, Yang W, et al. Inherited NUDT15 variant is a genetic determinant of mercaptopurine intolerance in children with acute lymphoblastic leukemia. J Clin Oncol. 2015;33(11):1235–1242. doi:10.1200/JCO.2014.59.4671
  • Limdi NA, Wadelius M, Cavallari L, et al. Warfarin pharmacogenetics: a single VKORC1 polymorphism is predictive of dose across 3 racial groups. Blood. 2010;115(18):3827–3834. doi:10.1182/blood-2009-12-255992
  • D’andrea G, D’ambrosio RL, DI PERNA P, et al. A polymorphism in the VKORC1 gene is associated with an interindividual variability in the dose-anticoagulant effect of warfarin. Blood. 2005;105(2):645–649. doi:10.1182/blood-2004-06-2111
  • Limdi NA, Arnett DK, Goldstein JA, et al. Influence of CYP2C9 and VKORC1 on warfarin dose, anticoagulation attainment and maintenance among European-Americans and African-Americans. Pharmacogenomics. 2008;9(5):511–526. doi:10.2217/14622416.9.5.511
  • Veenstra DL, You JH, Rieder MJ, et al. Association of vitamin K epoxide reductase complex 1 (VKORC1) variants with warfarin dose in a Hong Kong Chinese patient population. Pharmacogenet Genomics. 2005;15(10):687–691. doi:10.1097/01.fpc.0000174789.77614.68
  • Li D, Zhao H, Gelernter J. Further clarification of the contribution of the ADH1C gene to vulnerability of alcoholism and selected liver diseases. Hum Genet. 2012;131(8):1361–1374. doi:10.1007/s00439-012-1163-5
  • Tanner JA, Zhu AZ, Claw KG, et al. Novel CYP2A6 diplotypes identified through next-generation sequencing are associated with in-vitro and in-vivo nicotine metabolism. Pharmacogenet Genomics. 2018;28(1):7–16. doi:10.1097/FPC.0000000000000317
  • Kassogue Y, Diakite B, Kassogue O, et al. Genetic polymorphism of drug metabolism enzymes (GSTM1, GSTT1 and GSTP1) in the healthy Malian population. Mol Biol Rep. 2020;47(1):393–400. doi:10.1007/s11033-019-05143-5