128
Views
0
CrossRef citations to date
0
Altmetric
Original Research

Associations of GWAS-Identified Risk Loci with Progression, Efficacy and Toxicity of Radiotherapy of Head and Neck Squamous Cell Carcinoma Treated with Radiotherapy

, , &
Pages 1205-1210 | Published online: 21 Sep 2021

References

  • Ferlay J, Colombet M, Soerjomataram I, et al. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int J Cancer. 2019;144(8):1941–1953. doi:10.1002/ijc.31937
  • Hashibe M, Brennan P, Benhamou S, et al. Alcohol drinking in never users of tobacco, cigarette smoking in never drinkers, and the risk of head and neck cancer: pooled analysis in the International Head and Neck Cancer Epidemiology Consortium. J Natl Cancer Inst. 2007;99(10):777–789. doi:10.1093/jnci/djk179
  • Lee NCJ, Kelly JR, Park HS, et al. Patterns of failure in high-metastatic node number human papillomavirus-positive oropharyngeal carcinoma. Oral Oncol. 2018;85:35–39. doi:10.1016/j.oraloncology.2018.08.001
  • Leemans CR, Braakhuis BJ, Brakenhoff RH. The molecular biology of head and neck cancer. Nat Rev Cancer. 2011;11(1):9–22. doi:10.1038/nrc2982
  • Glazer CA, Chang SS, Ha PK, Califano JA. Applying the molecular biology and epigenetics of head and neck cancer in everyday clinical practice. Oral Oncol. 2009;45(4–5):440–446. doi:10.1016/j.oraloncology.2008.05.013
  • Ebrahimi A, Luk PP, Low H, et al. The American Joint Committee on Cancer staging for metastatic head and neck cutaneous squamous cell carcinoma: a multi-institutional study of within-stage heterogeneity and impact on prognostic performance. Head Neck. 2020;42(11):3235–3242. doi:10.1002/hed.26369
  • Mroz EA, Rocco JW. Intra-tumor heterogeneity in head and neck cancer and its clinical implications. World J Otorhinolaryngol Head Neck Surg. 2016;2(2):60–67. doi:10.1016/j.wjorl.2016.05.007
  • Sanguansin S, Petmitr S, O-charoenrat P, Pongstaporn W. Association of glutathione S-transferase omega gene polymorphisms with progression of head and neck cancer. Mol Biol Rep. 2012;39(12):10915–10920. doi:10.1007/s11033-012-1991-3
  • Zhang Z, Wang L, Wei S, et al. Polymorphisms of the DNA repair gene MGMT and risk and progression of head and neck cancer. DNA Repair (Amst). 2010;9(5):558–566. doi:10.1016/j.dnarep.2010.02.006
  • Zhang Z, Wang LE, Sturgis EM, et al. Polymorphisms of FAS and FAS ligand genes involved in the death pathway and risk and progression of squamous cell carcinoma of the head and neck. Clin Cancer Res. 2006;12(18):5596–5602. doi:10.1158/1078-0432.CCR-05-1739
  • Zhang Z, Shi Q, Sturgis EM, Spitz MR, Hong WK, Wei Q. Thymidylate synthase 5ʹ- and 3ʹ-untranslated region polymorphisms associated with risk and progression of squamous cell carcinoma of the head and neck. Clin Cancer Res. 2004;10(23):7903–7910. doi:10.1158/1078-0432.CCR-04-0923
  • Shete S, Liu H, Wang J, et al. A Genome-Wide Association Study identifies two novel susceptible regions for squamous cell carcinoma of the head and neck. Cancer Res. 2020;80(12):2451–2460. doi:10.1158/0008-5472.CAN-19-2360
  • Strigari L, Pinnaro P, Carlini P, et al. Efficacy and mucosal toxicity of concomitant chemo-radiotherapy in patients with locally-advanced squamous cell carcinoma of the head-and-neck in the light of a novel mathematical model. Crit Rev Oncol Hematol. 2016;102:101–110. doi:10.1016/j.critrevonc.2016.04.004
  • Gingerich MA, Smith JD, Michmerhuizen NL, et al. Comprehensive review of genetic factors contributing to head and neck squamous cell carcinoma development in low-risk, nontraditional patients. Head Neck. 2018;40(5):943–954. doi:10.1002/hed.25057
  • Gao Z, Li S, Zhou X, Li H, He S. Knockdown of lncRNA ZNRD1-AS1 inhibits progression of bladder cancer by regulating miR-194 and ZEB1. Cancer Med. 2020;9(20):7695–7705. doi:10.1002/cam4.3373
  • Wang Q, Hu X, Du M, et al. ZNRD1-AS1 promotes nasopharyngeal carcinoma cell invasion and metastasis by regulating the miR-335-ROCK1 axis. OncoTargets Ther. 2020;13:4779–4790. doi:10.2147/OTT.S250028
  • Kim HW, Jeong D, Ham J, et al. ZNRD1 and Its antisense long noncoding RNA ZNRD1-AS1 are oppositely regulated by cold atmospheric plasma in breast cancer cells. Oxid Med Cell Longev. 2020;2020:9490567. doi:10.1155/2020/9490567
  • Wang M, Yang C, Liu X, et al. An upstream open reading frame regulates vasculogenic mimicry of glioma via ZNRD1-AS1/miR-499a-5p/ELF1/EMI1 pathway. J Cell Mol Med. 2020;24(11):6120–6136. doi:10.1111/jcmm.15217
  • Peng JT, Li MC. A functional Cis-eQTL locus in lncRNA ZNRD1-AS1 contributes to the susceptibility of endometrial cancer. Eur Rev Med Pharmacol Sci. 2019;23(18):7802–7807.
  • Wang PY, Li JH, Liu YM, et al. Single nucleotide polymorphisms in ZNRD1-AS1 increase cancer risk in an Asian population. Oncotarget. 2017;8(6):10064–10070. doi:10.18632/oncotarget.14334
  • Liu Z, Song C, Wen J, et al. Hepatitis B virus genotypes, expression quantitative trait loci for ZNRD1-AS1 and their interactions in hepatocellular carcinoma. Oncotarget. 2016;7(28):44076–44083. doi:10.18632/oncotarget.9854
  • Li D, Song L, Wen Z, et al. Strong evidence for LncRNA ZNRD1-AS1, and its functional Cis- eQTL locus contributing more to the susceptibility of lung cancer. Oncotarget. 2016;7(24):35813–35817. doi:10.18632/oncotarget.8411
  • Guo L, Wen J, Han J, et al. Expression quantitative trait loci in long non-coding RNA ZNRD1-AS1 influence cervical cancer development. Am J Cancer Res. 2015;5(7):2301–2307.
  • Wen J, Liu Y, Liu J, et al. Expression quantitative trait loci in long non-coding RNA ZNRD1-AS1 influence both HBV infection and hepatocellular carcinoma development. Mol Carcinog. 2015;54(11):1275–1282. doi:10.1002/mc.22200
  • Boyle AP, Hong EL, Hariharan M, et al. Annotation of functional variation in personal genomes using RegulomeDB. Genome Res. 2012;22(9):1790–1797. doi:10.1101/gr.137323.112
  • Morel C, Zwahlen F, Jeannet M, Mach B, Tiercy JM. Complete analysis of HLA-DQB1 polymorphism and DR-DQ linkage disequilibrium by oligonucleotide typing. Hum Immunol. 1990;29(1):64–77. doi:10.1016/0198-8859(90)90070-6
  • David AL, Taylor GM, Gokhale D, Aplin JD, Seif MW, Tindall VR. HLA-DQB1*03 and cervical intraepithelial neoplasia type III. Lancet. 1992;340(8810):52. doi:10.1016/0140-6736(92)92464-Q
  • Reveille JD, Owerbach D, Goldstein R, Moreda R, Isern RA, Arnett FC. Association of polar amino acids at position 26 of the HLA-DQB1 first domain with the anticentromere autoantibody response in systemic sclerosis (scleroderma). J Clin Invest. 1992;89(4):1208–1213. doi:10.1172/JCI115704
  • Wank R, Meulen JT, Luande J, Eberhardt HC, Pawlita M. Cervical intraepithelial neoplasia, cervical carcinoma, and risk for patients with HLA-DQB1*0602,*301,*0303 alleles. Lancet. 1993;341(8854):1215. doi:10.1016/0140-6736(93)91043-L
  • Halle MK, Sodal M, Forsse D, et al. A 10-gene prognostic signature points to LIMCH1 and HLA-DQB1 as important players in aggressive cervical cancer disease. Br J Cancer. 2021;124(10):1690–1698. doi:10.1038/s41416-021-01305-0
  • Lonsdale J, Thomas J, Salvatore M. The genotype-tissue expression (GTEx) project. Nat Genet. 2013;45(6):580–585. doi:10.1038/ng.2653
  • Suomela S, Elomaa O, Skoog T, et al. CCHCR1 is up-regulated in skin cancer and associated with EGFR expression. PLoS One. 2009;4(6):e6030. doi:10.1371/journal.pone.0006030