230
Views
0
CrossRef citations to date
0
Altmetric
Review

Effect of Genetic Variations in Drug-Metabolizing Enzymes and Drug Transporters on the Pharmacokinetics of Rifamycins: A Systematic Review

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 561-571 | Published online: 04 Jun 2022

References

  • WHO. Global tuberculosis report 2021. 2021.
  • William J, Burman KG. Comparative pharmacokinetics and pharmacodynamics of the rifamycin antibacterials. Clin Pharmacokinet. 2001;40(5):327–341. doi:10.2165/00003088-200140050-00002
  • Surey J, Stagg HR, Yates TA, et al. An open label, randomised controlled trial of rifapentine versus rifampicin based short course regimens for the treatment of latent tuberculosis in England: the HALT LTBI pilot study. BMC Infect Dis. 2021;21(1):90. doi:10.1186/s12879-021-05766-9
  • Shayto RH, Abou Mrad R, Sharara AI. Use of rifaximin in gastrointestinal and liver diseases. World J Gastroenterol. 2016;22(29):6638–6651. doi:10.3748/wjg.v22.i29.6638
  • Sileshi T, Tadesse E, Makonnen E, Aklillu E. The impact of first-line anti-tubercular drugs’ pharmacokinetics on treatment outcome: a systematic review. Clin Pharmacol. 2021;13:1–12. doi:10.2147/CPAA.S289714
  • Ramachandran G, Hemanth Kumar AK, Bhavani PK, et al. Age, nutritional status and INH acetylator status affect pharmacokinetics of anti-tuberculosis drugs in children. Int J Tuberc Lung Dis. 2013;17(6):800–806. doi:10.5588/ijtld.12.0628
  • Daskapan A, Idrus LR, Postma MJ, et al. A systematic review on the effect of HIV infection on the pharmacokinetics of first-line tuberculosis drugs. Clin Pharmacokinet. 2019;58(6):747–766. doi:10.1007/s40262-018-0716-8
  • Alfarisi O, Mave V, Gaikwad S, et al. Effect of diabetes mellitus on the pharmacokinetics and pharmacodynamics of tuberculosis treatment. Antimicrob Agents Chemother. 2018;62(11):e01383–18. doi:10.1128/AAC.01383-18
  • Mtabho CM, Semvua HH, van den Boogaard J, et al. Effect of diabetes mellitus on TB drug concentrations in Tanzanian patients. J Antimicrob Chemother. 2019;74(12):3537–3545. doi:10.1093/jac/dkz368
  • Afsar NA, Bruckmueller H, Werk AN, Nisar MK, Ahmad HR, Cascorbi I. Implications of genetic variation of common drug metabolizing enzymes and ABC transporters among the Pakistani population. Sci Rep. 2019;9(1):7323. doi:10.1038/s41598-019-43736-z
  • Ahmed S, Zhou Z, Zhou J, Chen S-Q. Pharmacogenomics of drug metabolizing enzymes and transporters: relevance to precision medicine. Genom Proteom Bioinform. 2016;14(5):298–313. doi:10.1016/j.gpb.2016.03.008
  • Choi R, Jeong BH, Koh WJ, Lee SY. Recommendations for optimizing tuberculosis treatment: therapeutic drug monitoring, pharmacogenetics, and nutritional status considerations. Ann Lab Med. 2017;37(2):97–107. doi:10.3343/alm.2017.37.2.97
  • Motta I, Calcagno A, Bonora S. Pharmacokinetics and pharmacogenetics of anti-tubercular drugs: a tool for treatment optimization?. Expert Opin Drug Metab Toxicol. 2018;14(1):59–82. doi:10.1080/17425255.2018.1416093
  • Nakajima A, Fukami T, Kobayashi Y, Watanabe A, Nakajima M, Yokoi T. Human arylacetamide deacetylase is responsible for deacetylation of rifamycins: rifampicin, rifabutin, and rifapentine. Biochem Pharmacol. 2011;82(11):1747–1756. doi:10.1016/j.bcp.2011.08.003
  • Shimizu M, Fukami T, Kobayashi Y, et al. A novel polymorphic allele of human arylacetamide deacetylase leads to decreased enzyme activity. Drug Metab Dispos. 2012;40(6):1183–1190. doi:10.1124/dmd.112.044883
  • Keogh J, Hagenbuch B, Rynn C, Stieger B, Nicholls G. Chapter 1 membrane transporters: fundamentals, function and their role in ADME. Drug transporters: volume 1: role and importance in ADME and drug development. 1: the royal society of chemistry; 2016: 1–56.
  • Shugarts S, Benet LZ. The role of transporters in the pharmacokinetics of orally administered drugs. Pharm Res. 2009;26(9):2039–2054. doi:10.1007/s11095-009-9924-0
  • Thomas L, Sekhar Miraj S, Surulivelrajan M, Varma M, Sanju CSV, Rao M. Influence of single nucleotide polymorphisms on rifampin pharmacokinetics in tuberculosis patients. Antibiotics. 2020;9(6):307. doi:10.3390/antibiotics9060307
  • Li LM, Chen L, Deng GH, et al. SLCO1B1 *15 haplotype is associated with rifampin-induced liver injury. Mol Med Rep. 2012;6(1):75–82. doi:10.3892/mmr.2012.900
  • Mohammad IS, He W, Yin L. Understanding of human ATP binding cassette superfamily and novel multidrug resistance modulators to overcome MDR. Biomed Pharmacother. 2018;100:335–348. doi:10.1016/j.biopha.2018.02.038
  • Köck K, Grube M, Jedlitschky G, et al. Expression of adenosine triphosphate-binding cassette (ABC) drug transporters in peripheral blood cells: relevance for physiology and pharmacotherapy. Clin Pharmacokinet. 2007;46(6):449–470. doi:10.2165/00003088-200746060-00001
  • Marin JJG. Plasma membrane transporters in modern liver pharmacology. Scientifica. 2012;2012:428139. doi:10.6064/2012/428139
  • Juan-Carlos P-DM, Perla-Lidia -P-P, Stephanie-Talia -M-M, Mónica-Griselda A-M, Luz-María T-E. ABC transporter superfamily. An updated overview, relevance in cancer multidrug resistance and perspectives with personalized medicine. Mol Biol Rep. 2021;48(2):1883–1901. doi:10.1007/s11033-021-06155-w
  • Schuetz EG, Schinkel AH, Relling MV, Schuetz JD. P-glycoprotein: a major determinant of rifampicin-inducible expression of cytochrome P4503A in mice and humans. Proc Nat Acad Sci. 1996;93(9):4001–4005. doi:10.1073/pnas.93.9.4001
  • Martinec O, Biel C, de Graaf IAM, et al. Rifampicin induces gene, protein, and activity of P-glycoprotein (ABCB1) in human precision-cut intestinal slices. Front Pharmacol. 2021;12:684156.
  • Khan N, Das A. Can the personalized medicine approach contribute in controlling tuberculosis in general and India in particular?. Precis Clin Med. 2020;3(3):240–243. doi:10.1093/pcmedi/pbaa021
  • da Silva Alcobia MC, Nogueira L, Villar M, et al. Precision medicine in tuberculosis treatment – a role for pharmacogenetics?. Eur Respir J. 2018;52(suppl 62):PA2689.
  • Mahomed S, Padayatchi N, Singh J, Naidoo K. Precision medicine in resistant tuberculosis: treat the correct patient, at the correct time, with the correct drug. J Infect. 2019;78(4):261–268. doi:10.1016/j.jinf.2019.03.006
  • Lange C, Aarnoutse R, Chesov D, et al. Perspective for precision medicine for tuberculosis. Front Immunol. 2020;11:2442. doi:10.3389/fimmu.2020.566608
  • Sohani ZN, Meyre D, de Souza RJ, et al. Assessing the quality of published genetic association studies in meta-analyses: the quality of genetic studies (Q-Genie) tool. BMC Genet. 2015;16(1):50. doi:10.1186/s12863-015-0211-2
  • Naidoo A, Chirehwa M, Ramsuran V, et al. Effects of genetic variability on rifampicin and isoniazid pharmacokinetics in South African patients with recurrent tuberculosis. Pharmacogenomics. 2019;20(4):224–240. doi:10.2217/pgs-2018-0166
  • Gengiah TN, Botha JH, Soowamber D, Naidoo K, Abdool Karim SS. Low rifampicin concentrations in tuberculosis patients with HIV infection. J Infect Dev Countries. 2014;8(8):987–993. doi:10.3855/jidc.4696
  • Jeremiah K, Denti P, Chigutsa E, et al.. Nutritional supplementation increases rifampin exposure among tuberculosis patients coinfected with HIV. Antimicrob Agents Chemother. 2014;58(6):3468–3474. doi:10.1128/AAC.02307-13
  • Ramesh K, Hemanth Kumar AK, Kannan T. SLCO1B1 gene polymorphisms do not influence plasma rifampicin concentrations in a South Indian population. Int J Tuberc Lung Dis. 2016;20(9):1231–1235. doi:10.5588/ijtld.15.1007
  • Mukonzo JK, Kengo A, Kutesa B, et al. Role of pharmacogenetics in rifampicin pharmacokinetics and the potential effect on TB-rifampicin sensitivity among Ugandan patients. Trans R Soc Trop Med Hyg. 2020;114(2):107–114. doi:10.1093/trstmh/trz108
  • Weiner M, Peloquin C, Burman W, et al. Effects of tuberculosis, race, and human gene SLCO1B1 polymorphisms on rifampin concentrations. Antimicrob Agents Chemother. 2010;54(10):4192–4200. doi:10.1128/AAC.00353-10
  • Kim ES, Kwon BS, Park JS, et al. Relationship among genetic polymorphism of SLCO1B1, rifampicin exposure and clinical outcomes in patients with active pulmonary tuberculosis. Br J Clin Pharmacol. 2021;87(9):3492–3500. doi:10.1111/bcp.14758
  • Medellin-Garibay SE, Huerta-Garcia AP, Rodriguez-Baez AS, et al. A population approach of rifampicin pharmacogenetics and pharmacokinetics in Mexican patients with tuberculosis. Tuberculosis. 2020;124:101982.
  • Huerta-García AP, Medellín-Garibay SE, Salazar-González RA, et al.Anthropometric and genetic factors associated with the exposure of rifampicin and isoniazid in Mexican patients with tuberculosis. Ther Drug Monit. 2019;41:648–656.
  • Chigutsa E, Visser ME, Swart EC. The SLCO1B1 rs4149032 polymorphism is highly prevalent in South Africans and is associated with reduced rifampin concentrations: dosing implications. Antimicrob Agents Chemother. 2011;55(9):4122–4127. doi:10.1128/AAC.01833-10
  • Francis J, Zvada SP, Denti P, et al.. A population pharmacokinetic analysis shows that arylacetamide deacetylase (AADAC) gene polymorphism and HIV infection affect the exposure of rifapentine. Antimicrob Agents Chemother. 2019;63(4). doi:10.1128/AAC.01964-18.
  • Dompreh A, Tang X, Zhou J, et al.. Effect of genetic variation of NAT2 on isoniazid and SLCO1B1 and CES2 on rifampin pharmacokinetics in Ghanaian children with tuberculosis. Antimicrob Agents Chemother. 2018;62(3). doi:10.1128/AAC.02099-17.
  • Sloan DJ, McCallum AD, Schipani A, et al.. Genetic determinants of the pharmacokinetic variability of rifampin in Malawian adults with pulmonary tuberculosis. Antimicrob Agents Chemother. 2017;61(7). doi:10.1128/AAC.00210-17.
  • Weiner M, Gelfond J, Johnson-Pais TL, et al. Decreased plasma rifapentine concentrations associated with AADAC single nucleotide polymorphism in adults with tuberculosis. J Antimicrob Chemother. 2021;76(3):582–586. doi:10.1093/jac/dkaa490
  • Song SH, Chang HE, Jun SH, et al. Relationship between ces2 genetic variations and rifampicin metabolism. J Antimicrob Chemother. 2013;68(6):1281–1284. doi:10.1093/jac/dkt036
  • Niemi M, Pasanen MK, Neuvonen PJ. Organic anion transporting polypeptide 1B1: a genetically polymorphic transporter of major importance for hepatic drug uptake. Pharmacol Rev. 2011;63(1):157–181. doi:10.1124/pr.110.002857
  • Al-Salameh A, Danchin N, Verstuyft C, et al. Association between rs4149056 variant in SLCO1B1 and early discontinuation of statin after acute myocardial infarction. Pharmacogenomics. 2020;21(3):163–172. doi:10.2217/pgs-2019-0109
  • Rajman I, Knapp L, Hanna I. Genetic diversity in drug transporters: impact in African populations. Clin Transl Sci. 2020;13(5):848–860. doi:10.1111/cts.12769
  • Aklillu E, Habtewold A, Ngaimisi E, et al. SLCO1B1 gene variations among Tanzanians, Ethiopians, and Europeans: relevance for African and worldwide precision medicine. Omics. 2016;20(9):538–545. doi:10.1089/omi.2016.0119
  • Luker GD, Flagg TP, Sha Q, et al. MDR1 P-glycoprotein reduces influx of substrates without affecting membrane potential. J Biol Chem. 2001;276(52):49053–49060.
  • Bosch TM, Meijerman I, Beijnen JH, Schellens JH. Genetic polymorphisms of drug-metabolising enzymes and drug transporters in the chemotherapeutic treatment of cancer. Clin Pharmacokinet. 2006;45(3):253–285. doi:10.2165/00003088-200645030-00003
  • Williamson B, Dooley KE, Zhang Y, Back DJ, Owen A. Induction of influx and efflux transporters and cytochrome P450 3A4 in primary human hepatocytes by rifampin, rifabutin, and rifapentine. Antimicrob Agents Chemother. 2013;57(12):6366–6369. doi:10.1128/AAC.01124-13
  • Jamis-Dow CA, Katki AG, Collins JM, Klecker* RW. Rifampin and rifabutin and their metabolism by human liver esterases. Xenobiotica. 1997;27(10):1015–1024. doi:10.1080/004982597239994
  • Merali Z, Ross S, Paré G. The pharmacogenetics of carboxylesterases: CES1 and CES2 genetic variants and their clinical effect. Drug Metabol Drug Interact. 2014;29(3):143–151. doi:10.1515/dmdi-2014-0009
  • Linskey DW, English JD, Perry DA, et al. Association of SLCO1B1 c.521T>C (rs4149056) with discontinuation of atorvastatin due to statin-associated muscle symptoms. Pharmacogenet Genom. 2020;30(9):208–211. doi:10.1097/FPC.0000000000000412
  • Santos PC, Soares RAG, Nascimento RM, et al. SLCO1B1 rs4149056 polymorphism associated with statin-induced myopathy is differently distributed according to ethnicity in the Brazilian general population: Amerindians as a high risk ethnic group. BMC Med Genet. 2011;12(1):136. doi:10.1186/1471-2350-12-136
  • Turongkaravee S, Jittikoon J, Lukkunaprasit T, Sangroongruangsri S, Chaikledkaew U, Thakkinstian A. A systematic review and meta-analysis of genotype-based and individualized data analysis of SLCO1B1 gene and statin-induced myopathy. Pharmacogenomics J. 2021;21(3):296–307. doi:10.1038/s41397-021-00208-w
  • Dudenkov TM, Ingle JN, Buzdar AU, et al. SLCO1B1 polymorphisms and plasma estrone conjugates in postmenopausal women with ER+ breast cancer: genome-wide association studies of the estrone pathway. Breast Cancer Res Treat. 2017;164(1):189–199. doi:10.1007/s10549-017-4243-3
  • Ramsey LB, Moncrieffe H, Smith CN, et al. Association of SLCO1B1 *14 allele with poor response to methotrexate in juvenile idiopathic arthritis patients. ACR Open Rheumatol. 2019;1(1):58–62. doi:10.1002/acr2.1008
  • Westphal K, Weinbrenner A, Zschiesche M, et al. Induction of P-glycoprotein by rifampin increases intestinal secretion of talinolol in human beings: a new type of drug/drug interaction. Clin Pharmacol Ther. 2000;68(4):345–355. doi:10.1067/mcp.2000.109797
  • Sissung TM, Baum CE, Kirkland CT, Gao R, Gardner ER, Figg WD. Pharmacogenetics of membrane transporters: an update on current approaches. Mol Biotechnol. 2010;44(2):152–167. doi:10.1007/s12033-009-9220-6
  • Bouatou Y, Stenz L, Ponte B, Ferrari S, Paoloni-Giacobino A, Hadaya K. Recipient rs1045642 polymorphism is associated with office blood pressure at 1-year post kidney transplantation: a single center pharmacogenetic cohort pilot study. Front Pharmacol. 2018;9. doi:10.3389/fphar.2018.00009
  • Kimchi-Sarfaty C, Oh JM, Kim IW, et al. A “silent” polymorphism in the MDR1 gene changes substrate specificity. Science. 2007;315(5811):525–528. doi:10.1126/science.1135308
  • Gabriele M, Puccini P, Lucchi M, Aprile V, Gervasi PG, Longo V. Arylacetamide deacetylase enzyme: presence and interindividual variability in human lungs. Drug Metab Dispos. 2019;47(9):961–965. doi:10.1124/dmd.119.087031
  • Metwally AS, El-Sheikh E-S, Galal AAA. The impact of diabetes mellitus on the pharmacokinetics of rifampicin among tuberculosis patients: a systematic review and meta-analysis study. Diabetes Metab Syndr. 2022;16(2):102410. doi:10.1016/j.dsx.2022.102410
  • Chideya S, Winston CA, Peloquin CA, et al. Isoniazid, rifampin, ethambutol, and pyrazinamide pharmacokinetics and treatment outcomes among a predominantly HIV-infected cohort of adults with tuberculosis from Botswana. Clin Infect Dis. 2009;48(12):1685–1694. doi:10.1086/599040
  • Nardotto GHB, Bollela VR, Rocha A, Della Pasqua O, Lanchote VL. No implication of HIV coinfection on the plasma exposure to rifampicin, pyrazinamide, and ethambutol in tuberculosis patients. Clin Transl Sci. 2022;15(2):514–523.