119
Views
0
CrossRef citations to date
0
Altmetric
Original Research

Examining an Association of Single Nucleotide Polymorphisms with Hyperuricemia in Chinese Flight Attendants

, , , , &
Pages 589-602 | Published online: 08 Jun 2022

References

  • Richette P, Bardin T. Gout. Lancet. 2010;375(9711):318–328. doi:10.1016/S0140-6736(09)60883-7
  • Reginato AM, Mount DB, Yang I, Choi HK. The genetics of hyperuricaemia and gout. Nat Rev Rheumatol. 2012;8(10):610–621. doi:10.1038/nrrheum.2012.144
  • Shipley M. Hyperuricaemia and gout. J R Coll Physicians Edinb. 2011;41(3):229–233. doi:10.4997/JRCPE.2011.311
  • Wang X, Wang J, Zhao C, Song J, Tian G, Li Y. Polymorphism of ABCG2 gene in hyperuricemia patients of Han and Uygur ethnicity with phlegm/non-phlegm block in Xinjiang, China. Med Sci Monit. 2018;24:6305–6312. doi:10.12659/MSM.908552
  • Borghi C, Rosei EA, Bardin T, et al. Serum uric acid and the risk of cardiovascular and renal disease. J Hypertens. 2015;33(9):1729–1741; discussion 1741.
  • Li X, Meng X, Timofeeva M, et al. Serum uric acid levels and multiple health outcomes: umbrella review of evidence from observational studies, randomised controlled trials, and Mendelian randomisation studies. BMJ. 2017;357:j2376.
  • Johnson RJ, Nakagawa T, Sanchez-Lozada LG, et al. Sugar, uric acid, and the etiology of diabetes and obesity. Diabetes. 2013;62(10):3307–3315.
  • Wu J, Qiu L, Cheng XQ, et al. Hyperuricemia and clustering of cardiovascular risk factors in the Chinese adult population. Sci Rep. 2017;7(1):5456.
  • Dalbeth N, Merriman TR, Stamp LK. Gout. Lancet. 2016;388(10055):2039–2052.
  • Sakurai H. Urate transporters in the genomic era. Curr Opin Nephrol Hypertens. 2013;22(5):545–550. doi:10.1097/MNH.0b013e328363ffc8
  • Liu R, Han C, Wu D, et al. Prevalence of hyperuricemia and gout in Mainland China from 2000 to 2014: a systematic review and meta-analysis. Biomed Res Int. 2015;2015:762820. doi:10.1155/2015/762820
  • Cascorbi I. Significance of pharmacogenomics in precision medicine. Clin Pharmacol Ther. 2018;103(5):732–735. doi:10.1002/cpt.1052
  • Dalbeth N, Stamp LK, Merriman TR. The genetics of gout: towards personalised medicine? BMC Med. 2017;15(1):108. doi:10.1186/s12916-017-0878-5
  • Köttgen A, Albrecht E, Teumer A, et al. Genome-wide association analyses identify 18 new loci associated with serum urate concentrations. Nat Genet. 2013;45(2):145–154. doi:10.1038/ng.2500
  • Tin A, Marten J, Halperin Kuhns VL, et al. Target genes, variants, tissues and transcriptional pathways influencing human serum urate levels. Nat Genet. 2019;51(10):1459–1474. doi:10.1038/s41588-019-0504-x
  • Stiburkova B, Pavelcova K, Pavlikova M, Ješina P, Pavelka K. The impact of dysfunctional variants of ABCG2 on hyperuricemia and gout in pediatric-onset patients. Arthritis Res Ther. 2019;21(1):77. doi:10.1186/s13075-019-1860-8
  • Dehghan A, Köttgen A, Yang Q, et al. Association of three genetic loci with uric acid concentration and risk of gout: a genome-wide association study. Lancet. 2008;372(9654):1953–1961. doi:10.1016/S0140-6736(08)61343-4
  • Major TJ, Dalbeth N, Stahl EA, Merriman TR. An update on the genetics of hyperuricaemia and gout. Nat Rev Rheumatol. 2018;14(6):341–353. doi:10.1038/s41584-018-0004-x
  • Yang B, Mo Z, Wu C, et al. A genome-wide association study identifies common variants influencing serum uric acid concentrations in a Chinese population. BMC Med Genomics. 2014;7(1):10. doi:10.1186/1755-8794-7-10
  • Kamatani Y, Matsuda K, Okada Y, et al. Genome-wide association study of hematological and biochemical traits in a Japanese population. Nat Genet. 2010;42(3):210–215. doi:10.1038/ng.531
  • Zhou ZW, Cui LL, Han L, et al. Polymorphisms in GCKR, SLC17A1 and SLC22A12 were associated with phenotype gout in Han Chinese males: a case-control study. BMC Med Genet. 2015;16(1):66. doi:10.1186/s12881-015-0208-8
  • Wrigley R, Phipps-Green AJ, Topless RK, et al. Pleiotropic effect of the ABCG2 gene in gout: involvement in serum urate levels and progression from hyperuricemia to gout. Arthritis Res Ther. 2020;22(1):45. doi:10.1186/s13075-020-2136-z
  • Narang RK, Topless R, Cadzow M, et al. Interactions between serum urate-associated genetic variants and sex on gout risk: analysis of the UK biobank. Arthritis Res Ther. 2019;21(1):13. doi:10.1186/s13075-018-1787-5
  • Chen CJ, Tseng CC, Yen JH, et al. ABCG2 contributes to the development of gout and hyperuricemia in a genome-wide association study. Sci Rep. 2018;8(1):3137. doi:10.1038/s41598-018-21425-7
  • Cheng ST, Wu S, Su CW, Teng MS, Hsu LA, Ko YL. Association of ABCG2 rs2231142-A allele and serum uric acid levels in male and obese individuals in a Han Taiwanese population. J Formos Med Assoc. 2017;116(1):18–23. doi:10.1016/j.jfma.2015.12.002
  • Lukkunaprasit T, Rattanasiri S, Turongkaravee S, et al. The association between genetic polymorphisms in ABCG2 and SLC2A9 and urate: an updated systematic review and meta-analysis. BMC Med Genet. 2020;21(1):210. doi:10.1186/s12881-020-01147-2
  • Duong NT, Ngoc NT, Thang NTM, et al. Polymorphisms of ABCG2 and slc22a12 genes associated with gout risk in Vietnamese population. Medicina. 2019;55(1). doi:10.3390/medicina55010008.
  • Tu HP, Ko AM, Chiang SL, et al. Joint effects of alcohol consumption and ABCG2 Q141K on chronic tophaceous gout risk. J Rheumatol. 2014;41(4):749–758. doi:10.3899/jrheum.130870
  • Stiburkova B, Pavelcova K, Zavada J, et al. Functional non-synonymous variants of ABCG2 and gout risk. Rheumatology. 2017;56(11):1982–1992. doi:10.1093/rheumatology/kex295
  • Kolz M, Johnson T, Sanna S, et al. Meta-analysis of 28,141 individuals identifies common variants within five new loci that influence uric acid concentrations. PLoS Genet. 2009;5(6):e1000504. doi:10.1371/journal.pgen.1000504
  • Tu HP, Min-Shan Ko A, Lee SS, et al. Variants of ALPK1 with ABCG2, SLC2A9, and SLC22A12 increased the positive predictive value for gout. J Hum Genet. 2018;63(1):63–70. doi:10.1038/s10038-017-0368-9
  • Lee YH, Seo YH, Kim JH, Choi SJ, Ji JD, Song GG. Associations between SLC2A9 polymorphisms and gout susceptibility: a meta-analysis. Z Rheumatol. 2017;76(1):64–70. doi:10.1007/s00393-016-0070-x
  • Miao J, Liu J, Xiao L, et al. The single nucleotide polymorphism rs1014290 of the SLC2A9 gene is associated with uric acid metabolism in parkinson’s disease. Parkinson's Dis. 2017;2017:7184927. doi:10.1155/2017/7184927
  • Stiburkova B, Ichida K, Sebesta I. Novel homozygous insertion in SLC2A9 gene caused renal hypouricemia. Mol Genet Metab. 2011;102(4):430–435. doi:10.1016/j.ymgme.2010.12.016
  • Shan R, Ning Y, Ma Y, et al. Incidence and risk factors of hyperuricemia among 2.5 million Chinese adults during the years 2017–2018. Int J Environ Res Public Health. 2021;18(5):2360. doi:10.3390/ijerph18052360
  • Cao J, Wang C, Zhang G, et al. Incidence and simple prediction model of hyperuricemia for urban Han Chinese adults: a prospective cohort study. Int J Environ Res Public Health. 2017;14(1):67. doi:10.3390/ijerph14010067
  • Nesthus T, Schroeder D, Connors M, Rentmeister-Bryant H, DeRoshina C. Flight attendant fatigue. Final report DOT/FAA/AM-07/21. Office of aerospace medicine, federal aviation administration: Washington, DC; 2007. Available from: http://www.dtic.mil/cgibin/GetTRDoc?AD=ADA471470. Accessed June 21, 2011.
  • Castro M, Carvalhais J, Teles J. Irregular working hours and fatigue of cabin crew. Work. 2015;51(3):505–511. doi:10.3233/WOR-141877
  • Griffiths RF, Powell DM. The occupational health and safety of flight attendants. Aviat Space Environ Med. 2012;83(5):514–521. doi:10.3357/ASEM.3186.2012
  • Hu CJ, Hong RM, Yeh GL, Hsieh IC. Insomnia, work-related burnout, and eating habits affecting the work ability of flight attendants. Aerosp Med Hum Perform. 2019;90(7):601–605. doi:10.3357/AMHP.5349.2019
  • McNeely E, Gale S, Tager I, et al. The self-reported health of U.S. flight attendants compared to the general population. Environ Health. 2014;13(1):13. doi:10.1186/1476-069X-13-13
  • Feijo D, Luiz RR, Camara VM. Common mental disorders among civil aviation flight attendants. Aviat Space Environ Med. 2014;85(4):433–439. doi:10.3357/ASEM.3768.2014
  • Shi YY, He L. SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci. Cell Res. 2005;15(2):97–98. doi:10.1038/sj.cr.7290272
  • Nakashima A, Ichida K, Ohkido I, et al. Dysfunctional ABCG2 gene polymorphisms are associated with serum uric acid levels and all-cause mortality in hemodialysis patients. Hum Cell. 2020;33(3):559–568.
  • Wang L, Ma Q, Yao H, et al. Association of GCKR rs780094 polymorphism with circulating lipid levels in type 2 diabetes and hyperuricemia in Uygur Chinese. Int J Clin Exp Pathol. 2018;11(9):4684–4694.
  • Matsuo H, Takada T, Nakayama A, et al. ABCG2 dysfunction increases the risk of renal overload hyperuricemia. Nucleosides Nucleotides Nucleic Acids. 2014;33(4–6):266–274.
  • Hoque KM, Dixon EE, Lewis RM, et al. The ABCG2 Q141K hyperuricemia and gout associated variant illuminates the physiology of human urate excretion. Nat Commun. 2020;11(1):2767.
  • Zhang L, Spencer KL, Voruganti VS, et al. Association of functional polymorphism rs2231142 (Q141K) in the ABCG2 gene with serum uric acid and gout in 4 US populations: the PAGE study. Am J Epidemiol. 2013;177(9):923–932.
  • Yamagishi K, Tanigawa T, Kitamura A, Köttgen A, Folsom AR, Iso H. The rs2231142 variant of the ABCG2 gene is associated with uric acid levels and gout among Japanese people. Rheumatology. 2010;49(8):1461–1465.
  • Takeuchi F, Yamamoto K, Isono M, et al. Genetic impact on uric acid concentration and hyperuricemia in the Japanese population. J Atheroscler Thromb. 2013;20(4):351–367.
  • Nakayama A, Matsuo H, Nakaoka H, et al. Common dysfunctional variants of ABCG2 have stronger impact on hyperuricemia progression than typical environmental risk factors. Sci Rep. 2014;4:5227.
  • Higashino T, Takada T, Nakaoka H, et al. Multiple common and rare variants of ABCG2 cause gout. RMD Open. 2017;3(2):e000464.
  • Sumino H, Ichikawa S, Kanda T, Nakamura T, Sakamaki T. Reduction of serum uric acid by hormone replacement therapy in postmenopausal women with hyperuricaemia. Lancet. 1999;354(9179):650.
  • Merino G, van Herwaarden AE, Wagenaar E, Jonker JW, Schinkel AH. Sex-dependent expression and activity of the ATP-binding cassette transporter breast cancer resistance protein (BCRP/ABCG2) in liver. Mol Pharmacol. 2005;67(5):1765–1771.
  • Espinosa-Salinas I, de la Iglesia R, Colmenarejo G, et al. GCKR rs780094 polymorphism as a genetic variant involved in physical exercise. Genes. 2019;10(8):570.
  • Wang J, Liu S, Wang B, et al. Association between gout and polymorphisms in GCKR in male Han Chinese. Hum Genet. 2012;131(7):1261–1265.
  • Phipps-Green AJ, Merriman ME, Topless R, et al. Twenty-eight loci that influence serum urate levels: analysis of association with gout. Ann Rheum Dis. 2016;75(1):124–130.
  • Sandoval-Plata G, Morgan K, Abhishek A. Variants in urate transporters, ADH1B, GCKR and MEPE genes associate with transition from asymptomatic hyperuricaemia to gout: results of the first gout versus asymptomatic hyperuricaemia GWAS in Caucasians using data from the UK biobank. Ann Rheum Dis. 2021;80(9):1220–1226.
  • Hollis-Moffatt JE, Phipps-Green AJ, Chapman B, et al. The renal urate transporter SLC17A1 locus: confirmation of association with gout. Arthritis Res Ther. 2012;14(2):R92.