240
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Multiple Recurrent Copy Number Variations (CNVs) in Chromosome 22 Including 22q11.2 Associated with Autism Spectrum Disorder

ORCID Icon, , , , , , , , , , ORCID Icon, , ORCID Icon, , , ORCID Icon & ORCID Icon show all
Pages 705-720 | Published online: 20 Jul 2022

References

  • American Psychiatric Association. DSM-5 Task Force. Diagnostic and Statistical Manual of Mental Disorders: DSM-5™. 5th ed. American Psychiatric Publishing, Inc; 2013. doi:10.1176/appi.books.9780890425596
  • Persico AM, Napolioni V. Autism genetics. Behav Brain Res. 2013;251:95–112. doi:10.1016/j.bbr.2013.06.012
  • Almandil NB, Alkuroud DN, AbdulAzeez S, AlSulaiman A, Elaissari A, Borgio JF. Environmental and genetic factors in autism spectrum disorders: special emphasis on data from Arabian studies. Int J Environ Res Public Health. 2019;16(4):658. doi:10.3390/ijerph16040658
  • Hayretdag C, Algedik P, Ekmekci CG, et al. Determination of genetic changes in etiology of autism spectrum disorder in twins by whole-exome sequencing. Gene Reports. 2020;19:100618. doi:10.1016/j.genrep.2020.100618
  • Ergaz Z, Weinstein-Fudim L, Ornoy A. Genetic and non-genetic animal models for autism spectrum disorders (ASD). Reprod Toxicol. 2016;64:116–140. doi:10.1016/j.reprotox.2016.04.024
  • Ecker C, Bookheimer SY, Murphy DG. Neuroimaging in autism spectrum disorder: brain structure and function across the lifespan. Lancet Neurol. 2015;14(11):1121–1134. doi:10.1016/S1474-4422(15)00050-2
  • Li X, Zou H, Brown WT. Genes associated with autism spectrum disorder. Brain Res Bull. 2012;88(6):543–552. doi:10.1016/j.brainresbull.2012.05.017
  • Kogan MD, Vladutiu CJ, Schieve LA, et al. The prevalence of parent-reported autism spectrum disorder among US children. Pediatrics. 2018;142(6):e20174161. doi:10.1542/peds.2017-4161
  • CDC. Centers for Disease Control and prevention (CDC) and Autism and Developmental Disabilities Monitoring (ADDM) network. Available from: https://www.cdc.gov/ncbddd/autism/addm.html. Accessed July 15, 2022.
  • AlBatti T, Alsaghan L, Alsharif M. Prevalence of autism spectrum disorder among Saudi children between 2 and 4 years old in Riyadh. Asian J Psychiatr. 2022;71:103054. doi:10.1016/j.ajp.2022.103054
  • General Authority for Statistics; Kingdom of Saudi Arabia. نتائج مسح ذوي الإعاقة لعام 2017 [Disability Survey 2017]; 2017. Available from: https://www.stats.gov.sa/ar/904. Accessed July 15, 2022. Arabic.
  • Baio J, Wiggins L, Christensen DL, et al. Prevalence of autism spectrum disorder among children aged 8 years—autism and developmental disabilities monitoring network, 11 sites, United States, 2014. MMWR Surveill Summ. 2018;67(6):1. doi:10.15585/mmwr.ss6706a1
  • Oikonomakis V, Kosma K, Mitrakos A, et al. Recurrent copy number variations as risk factors for autism spectrum disorders: analysis of the clinical implications. Clin Genet. 2016;89(6):708–718. doi:10.1111/cge.12740
  • Fine SE, Weissman A, Gerdes M, et al. Autism spectrum disorders and symptoms in children with molecularly confirmed 22q11. 2 deletion syndrome. J Autism Dev Disord. 2005;35(4):461–470. doi:10.1007/s10803-005-5036-9
  • Sealey L, Hughes B, Sriskanda A, et al. Environmental factors in the development of autism spectrum disorders. Environ Int. 2016;88:288–298. doi:10.1016/j.envint.2015.12.021
  • Geschwind DH. Genetics of autism spectrum disorders. Trends Cogn Sci. 2011;15(9):409–416. doi:10.1016/j.tics.2011.07.003
  • Cheroni C, Caporale N, Testa G. Autism spectrum disorder at the crossroad between genes and environment: contributions, convergences, and interactions in ASD developmental pathophysiology. Mol Autism. 2020;11:69. doi:10.1186/s13229-020-00370-1
  • Stefano V, Viviana C, Deny M, et al. Copy number variants in autism spectrum disorders. Prog Neuropsychopharmacol Biol Psychiatry. 2019;92:421–427. doi:10.1016/j.pnpbp.2019.02.012
  • Sahin M, Sur M. Genes, circuits, and precision therapies for autism and related neurodevelopmental disorders. Science. 2015;350(6263):aab3897. doi:10.1126/science.aab3897
  • Masini E, Loi E, Vega-Benedetti AF, et al. An overview of the main genetic, epigenetic and environmental factors involved in autism spectrum disorder focusing on synaptic activity. Int J Mol Sci. 2020;21(21):8290. PMID: 33167418; PMCID: PMC7663950. doi:10.3390/ijms21218290
  • Takumi T, Tamada K, Hatanaka F, Nakai N, Bolton PF. Behavioral neuroscience of autism. Neurosci Biobehav Rev. 2020;110:60–76. doi:10.1016/j.neubiorev.2019.04.012
  • Yu P, Wang C, Xu Q, et al. Detection of copy number variations in rice using array-based comparative genomic hybridization. BMC Genomics. 2011;12(1):372. doi:10.1186/1471-2164-12-372
  • Zhang F, Gu W, Hurles ME, Lupski JR. Copy number variation in human health, disease, and evolution. Annu Rev Genomics Hum Genet. 2009;10(1):451–481. doi:10.1146/annurev.genom.9.081307.164217
  • Henrichsen CN, Chaignat E, Reymond A. Copy number variants, diseases and gene expression. Hum Mol Genet. 2009;18(R1):R1–R8. doi:10.1093/hmg/ddp011
  • Nakai N, Otsuka S, Myung J, Takumi T. Autism spectrum disorder model mice: focus on copy number variation and epigenetics. Sci China Life Sci. 2015;58(10):976–984. doi:10.1007/s11427-015-4891-7
  • Grayton HM, Fernandes C, Rujescu D, Collier DA. Copy number variations in neurodevelopmental disorders. Prog Neurobiol. 2012;99(1):81–91. doi:10.1016/j.pneurobio.2012.07.005
  • Scherer SW, Lee C, Birney E, et al. Challenges and standards in integrating surveys of structural variation. Nat Genet. 2007;39(7s):S7–S15. doi:10.1038/ng2093
  • Magini P, Scarano E, Donati I, et al. Challenges in the clinical interpretation of small de novo copy number variants in neurodevelopmental disorders. Gene. 2019;706:162–171. doi:10.1016/j.gene.2019.05.007
  • Bacchelli E, Loi E, Cameli C, et al. Analysis of a Sardinian multiplex family with autism spectrum disorder points to post-synaptic density gene variants and identifies CAPG as a functionally relevant candidate gene. J Clin Med. 2019;8(2):212. PMID: 30736458; PMCID: PMC6406497. doi:10.3390/jcm8020212
  • Forsyth JK, Nachun D, Gandal MJ, et al. Synaptic and gene regulatory mechanisms in schizophrenia, autism, and 22q11. 2 copy number variant–mediated risk for neuropsychiatric disorders. Biol Psychiatry. 2020;87(2):150–163. doi:10.1016/j.biopsych.2019.06.029
  • Mehta D, Iwamoto K, Ueda J, et al. Comprehensive survey of CNVs influencing gene expression in the human brain and its implications for pathophysiology. Neurosci Res. 2014;79:22–33. doi:10.1016/j.neures.2013.10.009
  • Korbel JO, Urban AE, Affourtit JP, et al. Paired-end mapping reveals extensive structural variation in the human genome. Science. 2007;318(5849):420–426. doi:10.1126/science.1149504
  • Mills RE, Walter K, Stewart C, et al. Mapping copy number variation by population-scale genome sequencing. Nature. 2011;470(7332):59–65. doi:10.1038/nature09708
  • Sudmant PH, Kitzman JO, Antonacci F, et al. Diversity of human copy number variation and multicopy genes. Science. 2010;330(6004):641–646. doi:10.1126/science.1197005
  • Dunham I, Hunt A, Collins J, et al. The DNA sequence of human chromosome 22. Nature. 1999;402(6761):489–495. doi:10.1038/990031
  • NCBI. Homo sapiens chromosome 22. Available from: https://www.ncbi.nlm.nih.gov/nucleotide/CM000684.2. Accessed July 15, 2022.
  • (EMBL-EBI) TEBI. Chromosome 22: 1-50,818,468; 2022. Available from: http://asia.ensembl.org/Homo_sapiens/Location/Chromosome?chr=22;r=22:1-50818468. Accessed July 15, 2022.
  • Riley JD, Delahunty C, Alsadah A, Mazzola S, Astbury C. Further evidence of GABRA4 and TOP3B as autism susceptibility genes. Eur J Med Genet. 2020;63(5):103876. doi:10.1016/j.ejmg.2020.103876
  • Betancur C. Etiological heterogeneity in autism spectrum disorders: more than 100 genetic and genomic disorders and still counting. Brain Res. 2011;1380:42–77. doi:10.1016/j.brainres.2010.11.078
  • Hiramoto T, Kang G, Suzuki G, et al. Tbx1: identification of a 22q11. 2 gene as a risk factor for autism spectrum disorder in a mouse model. Hum Mol Genet. 2011;20(24):4775–4785. doi:10.1093/hmg/ddr404
  • Chen YZ, Matsushita M, Girirajan S, et al. Evidence for involvement of GNB1L in autism. Am J Med Genet Part B Neuropsychiatr Gene. 2012;159(1):61–71. doi:10.1002/ajmg.b.32002
  • Jonas RK, Montojo CA, Bearden CE. The 22q11. 2 deletion syndrome as a window into complex neuropsychiatric disorders over the lifespan. Biol Psychiatry. 2014;75(5):351–360. doi:10.1016/j.biopsych.2013.07.019
  • Jacquemont M-L, Sanlaville D, Redon R, et al. Array-based comparative genomic hybridisation identifies high frequency of cryptic chromosomal rearrangements in patients with syndromic autism spectrum disorders. J Med Genet. 2006;43(11):843–849. doi:10.1136/jmg.2006.043166
  • O’donovan MC, Kirov G, Owen MJ. Phenotypic variations on the theme of CNVs. Nat Genet. 2008;40(12):1392–1393. doi:10.1038/ng1208-1392
  • Vorstman JA, Breetvelt EJ, Thode KI, Chow EW, Bassett AS. Expression of autism spectrum and schizophrenia in patients with a 22q11. 2 deletion. Schizophr Res. 2013;143(1):55–59. doi:10.1016/j.schres.2012.10.010
  • Gamsiz ED, Sciarra LN, Maguire AM, Pescosolido MF, van Dyck LI, Morrow EM. Discovery of rare mutations in autism: elucidating neurodevelopmental mechanisms. Neurotherapeutics. 2015;12(3):553–571. doi:10.1007/s13311-015-0363-9
  • Safari MR, Ghafouri-Fard S, Noroozi R, et al. FOXP3 gene variations and susceptibility to autism: a case–control study. Gene. 2017;596:119–122. doi:10.1016/j.gene.2016.10.019
  • Noroozi R, Taheri M, Movafagh A, et al. Glutamate receptor, metabotropic 7 (GRM7) gene variations and susceptibility to autism: a case–control study. Autism Res. 2016;9(11):1161–1168. doi:10.1002/aur.1640
  • Taraska JW, Zagotta WN. Fluorescence applications in molecular neurobiology. Neuron. 2010;66(2):170–189. doi:10.1016/j.neuron.2010.02.002
  • Wenger TL, Miller JS, DePolo LM, et al. 22q11. 2 duplication syndrome: elevated rate of autism spectrum disorder and need for medical screening. Mol Autism. 2016;7(1):27. doi:10.1186/s13229-016-0090-z
  • Ousley O, Evans A, Fernandez-Carriba S, et al. Examining the overlap between autism spectrum disorder and 22q11. 2 deletion syndrome. Int J Mol Sci. 2017;18(5):1071. doi:10.3390/ijms18051071
  • Lin A, Vajdi A, Kushan-Wells L, et al. Reciprocal copy number variations at 22q11. 2 produce distinct and convergent neurobehavioral impairments relevant for Schizophrenia and Autism Spectrum Disorder. Biol Psychiatry. 2020;88(3):260–272. doi:10.1016/j.biopsych.2019.12.028
  • Clements CC, Wenger TL, Zoltowski AR, et al. Critical region within 22q11.2 linked to higher rate of autism spectrum disorder. Mol Autism. 2017;8(1):58. doi:10.1186/s13229-017-0171-7
  • Paylor R, Lindsay E. Mouse models of 22q11 deletion syndrome. Biol Psychiatry. 2006;59(12):1172–1179. doi:10.1016/j.biopsych.2006.01.018
  • Yagi H, Furutani Y, Hamada H, et al. Role of TBX1 in human del22q11. 2 syndrome. Lancet. 2003;362(9393):1366–1373. doi:10.1016/S0140-6736(03)14632-6
  • El Omari K, De Mesmaeker J, Karia D, Ginn H, Bhattacharya S, Mancini EJ. Structure of the DNA‐bound T‐box domain of human TBX1, a transcription factor associated with the DiGeorge syndrome. Proteins Struct Funct Genet. 2012;80(2):655–660. doi:10.1002/prot.23208
  • Wang H, Chen D, Ma L, et al. Genetic analysis of the TBX1 gene promoter in ventricular septal defects. Mol Cell Biochem. 2012;370(1):53–58. doi:10.1007/s11010-012-1397-5
  • Xu Y-J, Chen S, Zhang J, et al. Novel TBX1 loss-of-function mutation causes isolated conotruncal heart defects in Chinese patients without 22q11. 2 deletion. BMC Med Genet. 2014;15(1):1–9. doi:10.1186/1471-2350-15-78
  • Jaouadi A, Tabebi M, Abdelhedi F, et al. A novel TBX1 missense mutation in patients with syndromic congenital heart defects. Biochem Biophys Res Commun. 2018;499(3):563–569. doi:10.1016/j.bbrc.2018.03.190
  • Li D, Gordon CT, Oufadem M, et al. Heterozygous mutations in TBX1 as a cause of isolated hypoparathyroidism. J Clin Endocrinol Metab. 2018;103(11):4023–4032. doi:10.1210/jc.2018-01260
  • Jerome LA, Papaioannou VE. DiGeorge syndrome phenotype in mice mutant for the T-box gene, Tbx1. Nat Genet. 2001;27(3):286–291. doi:10.1038/85845
  • Lindsay EA, Vitelli F, Su H, et al. Tbx1 haploinsufficiency in the DiGeorge syndrome region causes aortic arch defects in mice. Nature. 2001;410(6824):97–101. doi:10.1038/35065105
  • Merscher S, Funke B, Epstein JA, et al. TBX1 is responsible for cardiovascular defects in velo-cardio-facial/DiGeorge syndrome. Cell. 2001;104(4):619–629. doi:10.1016/S0092-8674(01)00247-1
  • Paylor R, Glaser B, Mupo A, et al. Tbx1 haploinsufficiency is linked to behavioral disorders in mice and humans: implications for 22q11 deletion syndrome. Proc Natl Acad Sci. 2006;103(20):7729–7734. doi:10.1073/pnas.0600206103
  • Schneider M, Debbané M, Bassett AS, et al. Psychiatric disorders from childhood to adulthood in 22q11. 2 deletion syndrome: results from the International Consortium on Brain and Behavior in 22q11. 2 Deletion Syndrome. Am J Psychiatry. 2014;171(6):627–639. doi:10.1176/appi.ajp.2013.13070864
  • Monks S, Niarchou M, Davies AR, et al. Further evidence for high rates of schizophrenia in 22q11. 2 deletion syndrome. Schizophr Res. 2014;153(1–3):231–236. doi:10.1016/j.schres.2014.01.020
  • Girirajan S, Eichler EE. Phenotypic variability and genetic susceptibility to genomic disorders. Hum Mol Genet. 2010;19(R2):R176–R87. doi:10.1093/hmg/ddq366
  • Crespi BJ, Crofts HJ. Association testing of copy number variants in schizophrenia and autism spectrum disorders. J Neurodev Disord. 2012;4(1):15. doi:10.1186/1866-1955-4-15
  • Moudi M, Sargazi S, Heidarinia M, et al. Polymorphism in the 3′-UTR of LIF but not in the ATF6B gene associates with schizophrenia susceptibility: a case-control study and in silico analyses. J Mol Neurosci. 2020;70(12):2093–2101. doi:10.1007/s12031-020-01616-6
  • Butler MG, Mcguire AB, Masoud H, Manzardo AM. Currently recognized genes for schizophrenia: high‐resolution chromosome ideogram representation. Am J Med Genet Part B Neuropsychiatr Gene. 2016;171:181–202. doi:10.1002/ajmg.b.32391
  • Grover D, Verma R, Goes FS, et al. Family-based association of YWHAH in psychotic bipolar disorder. Am J Med Genet Part B Neuropsychiatr Genet. 2009;150:977–983. doi:10.1002/ajmg.b.30927
  • Torrico B, Antón-Galindo E, Fernàndez-Castillo N, et al. Involvement of the 14-3-3 gene family in autism spectrum disorder and schizophrenia: genetics, transcriptomics and functional analyses. J Clin Med. 2020;9:1851. doi:10.3390/jcm9061851
  • Cormand B, Torrico B, Ghorbani S, et al. M13 - contribution of The 14-3-3 gene family to autism spectrum disorder. Eur Neuropsychopharmacol. 2017;27:S374–S375. doi:10.1016/j.euroneuro.2016.09.404
  • Woodward KJ, Stampalia J, Vanyai H, et al. Atypical nested 22q11.2 duplications between LCR22B and LCR22D are associated with neurodevelopmental phenotypes including autism spectrum disorder with incomplete penetrance. Mol Genet Genomic Med. 2019;7(2):e00507. doi:10.1002/mgg3.507
  • McDonald-McGinn DM, Sullivan KE, Marino B, et al. 22q11. 2 deletion syndrome. Nat Rev Dis Primers. 2015;1(1):1–19. doi:10.1038/nrdp.2015.71
  • Hoeffding LK, Trabjerg BB, Olsen L, et al. Risk of psychiatric disorders among individuals with the 22q11. 2 deletion or duplication: a Danish Nationwide, register-based study. JAMA Psychiatry. 2017;74(3):282–290. doi:10.1001/jamapsychiatry.2016.3939
  • Olsen L, Sparsø T, Weinsheimer SM, et al. Prevalence of rearrangements in the 22q11. 2 region and population-based risk of neuropsychiatric and developmental disorders in a Danish population: a case-cohort study. Lancet Psychiatry. 2018;5(7):573–580. doi:10.1016/S2215-0366(18)30168-8
  • McDonald-McGinn DM, Hain HS, Emanuel BS, et al. 22q11.2 deletion syn-drome. In: Adam MP, Ardinger HH, Pagon RA, editors. GeneReviews®. Seattle: University of Washington, Seattle; 1999.
  • Moreira ES, Silva IM, Lourenco N, et al. Detection of small copy number variations (CNVs) in autism spectrum disorder (ASD) by custom array comparative genomic hybridization (aCGH). Res Autism Spectr Disord. 2016;23:145–151. doi:10.1016/j.rasd.2015.12.012
  • Yi F, Danko T, Botelho SC, et al. Autism-associated SHANK3 haploinsufficiency causes Ih channelopathy in human neurons. Science. 2016;352:aaf2669.
  • Moreira DP, Griesi-Oliveira K, Bossolani-Maetins AL, et al. Investigation of 15q11-q13, 16p11. 2 and 22q13 CNVs in autism spectrum disorder Brazilian individuals with and without epilepsy. PLoS One. 2014;9:e107705. doi:10.1371/journal.pone.0107705
  • Meguid NA, Eid OM, Reda M, Elalfy DY, Hussein F. Copy number variations of SHANK3 and related sensory profiles in Egyptian children with autism spectrum disorder. Res Autism Spectr Disord. 2020;75:101558. doi:10.1016/j.rasd.2020.101558
  • Durand CM, Betancur C, Boeckers TM, et al. Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders. Nat Genet. 2007;39:25–27. doi:10.1038/ng1933
  • Chen J, Yu S, Fu Y, Li X. Synaptic proteins and receptors defects in autism spectrum disorders. Front Cell Neurosci. 2014;8:276. doi:10.3389/fncel.2014.00276
  • Griswold AJ, Ma D, HN C, et al. Evaluation of copy number variations reveals novel candidate genes in autism spectrum disorder-associated pathways. Hum Mol Genet. 2012;21(15):3513–3523. doi:10.1093/hmg/dds164
  • Barone R, Rizzo R, Tabbì G, Malaguarnera M, Frye RE, Bastin J. Nuclear Peroxisome Proliferator-Activated Receptors (PPARs) as therapeutic targets of resveratrol for autism spectrum disorder. Int J Mol Sci. 2019;20(8):1878. PMID: 30995737; PMCID: PMC6515064. doi:10.3390/ijms20081878
  • Pierrot N, Ris L, Stancu IC, et al. Sex-regulated gene dosage effect of PPARα on synaptic plasticity. Life Sci Alliance. 2019;2(2):e201800262. doi:10.26508/lsa.201800262
  • Giovedí S, Corradi A, Fassio A, Benfenati F. Involvement of synaptic genes in the pathogenesis of autism spectrum disorders: the case of synapsins. Front Pediatr. 2014;2:94. PMID: 25237665; PMCID: PMC4154395. doi:10.3389/fped.2014.00094
  • Ghafouri-Fard S, Noroozi R, Brand S, et al. Emerging role of non-coding RNAs in autism spectrum disorder. J Mol Neurosci. 2022;72(2):201–216. doi:10.1007/s12031-021-01934-3
  • Brignone Maria S, Angela L, Serena C, et al. MLC1 protein: a likely link between leukodystrophies and brain channelopathies. Front Cell Neurosci. 2015;9. doi:10.3389/fncel.2015.00106
  • Davis LK, Gamazon ER, Kistner-Griffin E, et al. Loci nominally associated with autism from genome-wide analysis show enrichment of brain expression quantitative trait loci but not lymphoblastoid cell line expression quantitative trait loci. Mol Autism. 2012;3(1):3. PMID: 22591576; PMCID: PMC3484025. doi:10.1186/2040-2392-3-3
  • Qin L, Ma K, Wang ZJ, et al. Social deficits in Shank3-deficient mouse models of autism are rescued by histone deacetylase (HDAC) inhibition. Nat Neurosci. 2018;21(4):564–575. doi:10.1038/s41593-018-0110-8
  • Yuan B, Wang L, Liu P, et al. CNVs cause autosomal recessive genetic diseases with or without involvement of SNV/indels. Genet Med. 2020;22(10):1633–1634. doi:10.1038/s41436-020-0864-8
  • Iourov IY, Vorsanova SG, Kurinnaia OS, et al. Causes and consequences of genome instability in psychiatric and neurodegenerative diseases. Mol Biol. 2021;55(1):37–46. doi:10.1134/S0026893321010155
  • Andriani GA, Vijg J, Montagna C. Mechanisms and consequences of aneuploidy and chromosome instability in the aging brain. Mech Ageing Dev. 2017;161:19–36. doi:10.1016/j.mad.2016.03.007
  • Chung B, Tao V, Tso W. Copy number variation and autism: new insights and clinical implications. J Formos Med Assoc. 2014;113(7):400–408. doi:10.1016/j.jfma.2013.01.005