24
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Influence of Long Non-Coding RNAs on Human Oocyte Development

, &
Pages 337-345 | Received 09 Nov 2023, Accepted 12 Jun 2024, Published online: 01 Jul 2024

References

  • Akrami R, Jacobsen A, Hoell J, et al. Comprehensive analysis of Long non-coding RNAs in ovarian Cancer reveals global patterns and targeted DNA amplification. PLoS One. 2013;8:1–11. doi:10.1371/journal.pone.0080306
  • Xiong Y, Liu T, Wang S, et al. Cyclophosphamide promotes the proliferation inhibition of mouse ovarian granulosa cells and premature ovarian failure by activating the lncRNA-Meg3-p53-p66Shc pathway. Gene. 2017;596:1–8. doi:10.1016/j.gene.2016.10.011
  • Li J, Cao Y, Xu X, et al. Increased new lncRNAmRNA gene pair levels in human cumulus cells correlate with oocyte maturation and embryo development. Reprod Sci. 2015;22:1008–1014. doi:10.1177/1933719115570911
  • Bao B, Garyerick HA. Expression of steroidogenic enzyme and gonadotropin receptor genes in bovine follicles during ovarian follicular waves: a review. Anim Sci. 1998;76(7):1903–1921. doi:10.2527/1998.7671903x
  • Luo Y, Zhang R, Gao J, et al. The localization and expression of epidermal growth factor and epidermal growth factor receptor in bovine ovary during oestrous cycle. Reprod Domest Anim. 2020;55(7):822–832. doi:10.1111/rda.13690
  • Downs SM. The influence of glucose, cumulus cells, and metabolic coupling on ATP levels and meiotic control in the isolated mouse oocyte. Dev Biol. 1995;167(2):502–512. doi:10.1006/dbio.1995.1044
  • Li SH, Lin MH, Hwu YM, et al. Correlation of cumulus gene expression of GJA1, PRSS35, PTX3, and SERPINE2 with oocyte maturation, fertilization, and embryo development. Reprod Biol Endocrinol. 2015;13:93. doi:10.1186/s12958-015-0091-3
  • Assidi M, Montag M, Sirard MA. Use of both cumulus cells’ transcriptomic markers and zona pellucida birefringence to select developmentally competent oocytes in human assisted reproductive technologies. BMC Genomics. 2015;16:S9. doi:10.1186/1471-2164-16-S1-S9
  • Kahraman S, Cetinkaya CP, Cetinkaya M, et al. Is there a correlation between follicle size and gene expression in cumulus cells and is gene expression an indicator of embryo development? Reprod Biol Endocrinol. 2018;16(1):69. doi:10.1186/s12958-018-0388-0
  • Wyse BA, Fuchs Weizman N, Kadish S, et al. Transcriptomics of cumulus cells - a window into oocyte maturation in humans. J Ovarian Res. 2020;13(1):93. doi:10.1186/s13048-020-00696-7
  • Fragouli E, Lalioti MD, Wells D. The transcriptome of follicular cells: biological insights and clinical implications for the treatment of infertility. Hum Reprod Update. 2014;20(1):1–11. doi:10.1093/humupd/dmt044
  • Okamura K. Diversity of animal small RNA pathways and their biological utility. Wiley Interdiscip Rev RNA. 2012;3:351–368. doi:10.1002/wrna.113
  • Wang KC, Chang HY. Molecular mechanisms of long noncoding RNAs. Mol Cell. 2011;43:904–914. doi:10.1016/j.molcel.2011.08.018
  • Mercer TR, Mattick JS. Structure and function of long noncoding RNAs in epigenetic regulation. Nat Struct Mol Biol. 2013;20:300–307. doi:10.1038/nsmb.2480
  • Sen R, Ghosal S, Das S, et al. Competing endogenous RNA: the key to posttranscriptional regulation. ScientifcWorldJournal. 2014;2014:896206.
  • Niu ZS, Wang WH, Dong XN, et al. Role of long noncoding RNA-mediated competing endogenous RNA regulatory network in hepatocellular carcinoma. World J Gastroenterol. 2020;26(29):4240–4260. doi:10.3748/wjg.v26.i29.4240
  • Statello L, Guo CJ, Chen LL, et al. Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol. 2021;22(2):96–118. doi:10.1038/s41580-020-00315-9
  • Liang L, Ai L, Qian J, et al. Long noncoding RNA expression profiles in gut tissues constitute molecular signatures that reflect the types of microbes. Sci Rep. 2015;5:11763. doi:10.1038/srep11763
  • Martens-Uzunova ES, Böttcher R, Croce CM, et al. Long noncoding RNA in prostate, bladder, and kidney cancer. Eur Urol. 2014;65(6):1140–1151. doi:10.1016/j.eururo.2013.12.003
  • Arita T, Ichikawa D, Konishi H, et al. Circulating long non-coding RNAs in plasma of patients with gastric cancer. Anticancer Res. 2013;33(8):3185–3193.
  • Vance KW, Sansom SN, Lee S, et al. The long non-coding RNA Paupar regulates the expression of both local and distal genes. EMBO J. 2014;33(4):296–311. doi:10.1002/embj.201386225
  • Li J, Xuan Z, Liu C. Long non-coding RNAs and complex human diseases. Int J Mol Sci. 2013;14(9):18790–18808. doi:10.3390/ijms140918790
  • Clark MB, Mattick JS. Long noncoding RNAs in cell biology. Semin Cell Dev Biol. 2011;22(4):366–376. doi:10.1016/j.semcdb.2011.01.001
  • Wang P, Ren Z, Sun P. Overexpression of the long non-coding RNA MEG3 impairs in vitro glioma cell proliferation. J Cell Biochem. 2012;113(6):1868–1874. doi:10.1002/jcb.24055
  • Yan L, Yang M, Guo H, et al. Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells. Nat Struct Mol Biol. 2013;20:1131–1139. doi:10.1038/nsmb.2660
  • Huang K, Maruyama T, Fan G. The naive state of human pluripotent stem cells: a synthesis of stem cell and preimplantation embryo transcriptome analyses. Cell Stem Cell. 2014;15:410–415. doi:10.1016/j.stem.2014.09.014
  • Bouckenheimer J, Assou S, Riquier S, et al. Long non-coding RNAs in human early embryonic development and their potential in ART. Hum Reprod Update. 2016;23:19–40. doi:10.1093/humupd/dmw035
  • Chow J, Heard E. X inactivation and the complexities of silencing a sex chromosome. Curr Opin Cell Biol. 2009;21:359–366. doi:10.1016/j.ceb.2009.04.012
  • Leeb M, Steffen PA, Wutz A. X chromosome inactivation sparked by non-coding RNAs. RNA Biol. 2009;6:94–99. doi:10.4161/rna.6.2.7716
  • Batista PJ, Chang HY. Long noncoding RNAs: cellular address codes in development and disease. Cell. 2013;152:1298–1307. doi:10.1016/j.cell.2013.02.012
  • Jiao J, Shi B, Wang TR, et al. Characterization of long non-coding RNA and messenger RNA profiles in follicular fluid from mature and immature ovarian follicles of healthy women and women with polycystic ovary syndrome. Hum Reprod. 2018;33:1735–1748. doi:10.1093/humrep/dey255
  • Zhang L, Zou J, Wang Z, Li L. A subpathway and target gene cluster-based approach uncovers lncRNAs associated with human primordial follicle activation. Int J Mol Sci. 2023;24(13):10525. doi:10.3390/ijms241310525
  • Wei L, Xia H, Liang Z, et al. Disrupted expression of long non-coding RNAs in the human oocyte: the possible epigenetic culprits leading to recurrent oocyte maturation arrest. J Assist Reprod Genet. 2022;39(10):2215–2225. doi:10.1007/s10815-022-02596-9
  • Ernst EH, Nielsen J, Ipsen MB, et al. Transcriptome analysis of long non-coding RNAs and genes encoding paraspeckle proteins during human ovarian follicle development. Front Cell Dev Biol. 2018;6:78. doi:10.3389/fcell.2018.00078
  • Yerushalmi GM, Salmon-Divon M, Yung Y, et al. Characterization of the human cumulus cell transcriptome during final follicular maturation and ovulation. Mol Hum Reprod. 2014;20(8):719–735. doi:10.1093/molehr/gau031
  • Yung Y, Ophir L, Yerushalmi GM, et al. HAS2-AS1 is a novel LH/hCG target gene regulating HAS2 expression and enhancing cumulus cells migration. J Ovarian Res. 2019;12:1–7. doi:10.1186/s13048-019-0495-3
  • Xu XF, Li J, Cao YX, et al. Differential expression of long noncoding RNAs in human cumulus cells related to embryo developmental potential: a microarray analysis. Reprod Sci. 2015;22(6):672–678. doi:10.1177/1933719114561562
  • Caponnetto A, Battaglia R, Ferrara C, et al. Down-regulation of long non-coding RNAs in reproductive aging and analysis of the lncRNA-miRNA-mRNA networks in human cumulus cells. J Assist Reprod Genet. 2022;39(4):919–931. doi:10.1007/s10815-022-02446-8
  • Bouckenheimer J, Fauque P, Lecellier CH, et al. Differential long non-coding RNA expression profiles in human oocytes and cumulus cells. Sci Rep. 2018;8(1):2202. doi:10.1038/s41598-018-20727-0
  • Chen Y, Zhang X, An Y, et al. LncRNA HCP5 promotes cell proliferation and inhibits apoptosis via miR-27a-3p/IGF-1 axis in human granulosa-like tumor cell line KGN. Mol Cell Endocrinol. 2020;503:110697. doi:10.1016/j.mce.2019.110697
  • Wang C, Yue S, Jiang Y, et al. LncRNA GAS5 is upregulated in polycystic ovary syndrome and regulates cell apoptosis and the expression of IL-6. J Ovarian Res. 2020;13(1):145. doi:10.1186/s13048-020-00748-y
  • Li Y, Liu YD, Chen SL, et al. Down-regulation of long non-coding RNA MALAT1 inhibits granulosa cell proliferation in endometriosis by up-regulating P21 via activation of the ERK/MAPK pathway. Mol Hum Reprod. 2019;25(1):17–29. doi:10.1093/molehr/gay045
  • Huang X, Hao C, Bao H, et al. Aberrant expression of long noncoding RNAs in cumulus cells isolated from PCOS patients. J Assist Reprod Genet. 2016;33:111–121. doi:10.1007/s10815-015-0630-z
  • Liu G, Liu S, Xing G, et al. lncRNA PVT1/MicroRNA-17-5p/PTEN Axis regulates secretion of E2 and P4, proliferation, and apoptosis of ovarian Granulosa cells in PCOS. Mol Ther Nucleic Acids. 2020;20:205–216. doi:10.1016/j.omtn.2020.02.007
  • Zhu HL, Chen YQ, Zhang ZF. Downregulation of lncRNA ZFAS1 and upregulation of microRNA-129 repress endocrine disturbance, increase proliferation and inhibit apoptosis of ovarian granulosa cells in polycystic ovarian syndrome by downregulating HMGB1. Genomics. 2020;112:3597–3608. doi:10.1016/j.ygeno.2020.04.011
  • Sang X, Zhang YZ. Long Non-coding RNA NEAT1 drives the development of polycystic ovary syndrome via sponging multiple MicroRNA. Cell Biol Int. 2020;2020:1. doi:10.1002/cbin.11349
  • Guo H, Li T, Sun X. LncRNA HOTAIRM1, miR-433-5p and PIK3CD function as a ceRNA network to exacerbate the development of PCOS. J Ovarian Res. 2021;14(1):19. doi:10.1186/s13048-020-00742-4
  • Li G, Wang Y, Wang J, et al. Long non-coding RNA placenta-specific protein 2 regulates micorRNA-19a/tumor necrosis factor α to participate in polycystic ovary syndrome. Bioengineered. 2022;13(1):856–862. doi:10.1080/21655979.2021.2013722
  • Guo Y, Peng X, Cheng R, et al. Long non-coding RNA-X-inactive specific transcript inhibits cell viability, and induces apoptosis through the microRNA-30c-5p/Bcl2-like protein 11 signaling axis in human granulosa-like tumor cells. Bioengineered. 2022;13(6):14107–14117. doi:10.1080/21655979.2022.2080366
  • Chen Z, Liu L, Xi X, et al. Aberrant H19 expression disrupts ovarian Cyp17 and testosterone production and is associated with polycystic ovary syndrome in women. Reprod Sci. 2022;29(4):1357–1367. doi:10.1007/s43032-021-00700-5
  • Sun X, Yan X, Liu K, et al. LncRNA H19 acts as a ceRNA to regulate the expression of CTGF by targeting miR-19b in polycystic ovary syndrome. Braz J Med Biol Res. 2020;53(11):e9266. doi:10.1590/1414-431x20209266
  • Huang Y, Zhang Y, Zhou Y, et al. CDKN2B-AS1 is overexpressed in polycystic ovary syndrome and sponges miR-181a to promote granulosa cell proliferation. Anticancer Drugs. 2023;34(2):207–213. doi:10.1097/CAD.0000000000001405
  • Jin L, Yang Q, Zhou C, et al. Profiles for long noncoding RNAs in ovarian granulosa cells from women with PCOS with or without hyperandrogenism. Reprod BioMed Online. 2018;37:613–623. doi:10.1016/j.rbmo.2018.08.005
  • Liu Y, Li Y, Feng S, et al. Long noncoding RNAs: potential regulators involved in the pathogenesis of polycystic ovary syndrome. Endocrinology. 2017;158:3890–3899. doi:10.1210/en.2017-00605
  • Yang R, Chen J, Wang L, et al. LncRNA BANCR participates in polycystic ovary syndrome by promoting cell apoptosis. Mol Med Rep. 2019;19:1581–1586. doi:10.3892/mmr.2018.9793
  • Che Q, Liu M, Zhang D, et al. Long noncoding RNA HUPCOS promotes follicular fluid androgen excess in PCOS patients via aromatase inhibition. J Clin Endocrinol Metab. 2020;105:1–12. doi:10.1210/clinem/dgaa060
  • Li Y, Zhang J, Liu YD, et al. Long non-coding RNA TUG1 and its molecular mechanisms in polycystic ovary syndrome. RNA Biol. 2020;17(12):1798–1810. doi:10.1080/15476286.2020.1783850
  • Xiang Y, Yu G, Song Y, et al. The Upregulation of HAS2-AS1 Relates to the Granulosa Cell Dysfunction by Repressing TGF-βSignaling and Upregulating HAS2. Mol Cell Biol. 2022;42(9):e0010722. doi:10.1128/mcb.00107-22
  • Geng X, Zhao J, Huang J, et al. lnc-MAP3K13-7:1 Inhibits Ovarian GC Proliferation in PCOS via DNMT1 downregulation-mediated CDKN1A promoter hypomethylation. Mol Ther. 2021;29(3):1279–1293. doi:10.1016/j.ymthe.2020.11.018
  • Wu G, Yang Z, Chen Y, et al. Downregulation of Lnc-OC1 attenuates the pathogenesis of polycystic ovary syndrome. Mol Cell Endocrinol. 2020;506:110760. doi:10.1016/j.mce.2020.110760
  • Zhang D, Yuan TH, Tan L, et al. MALAT1 is involved in the pathophysiological process of PCOS by modulating TGFβ signaling in granulosa cells. Mol Cell Endocrinol. 2020;499:110589. doi:10.1016/j.mce.2019.110589
  • Li Y, Xiang Y, Song Y, Zhang D, Tan L. MALAT1 downregulation is associated with polycystic ovary syndrome via binding with MDM2 and repressing P53 degradation. Mol Cell Endocrinol. 2022;543:111528. doi:10.1016/j.mce.2021.111528
  • Tu M, Wu Y, Wang F, et al. Effect of lncRNA MALAT1 on the granulosa cell proliferation and pregnancy outcome in patients with PCOS. Front Endocrinol. 2022;13:825431. doi:10.3389/fendo.2022.825431
  • Shi L, Wei X, Wu B, et al. Molecular signatures correlated with poor IVF outcomes: insights from the mRNA and lncRNA expression of endometriotic granulosa cells. Front Endocrinol. 2022;13:825934. doi:10.3389/fendo.2022.825934
  • Szaflik T, Romanowicz H, Szyłło K, et al. Long non-coding RNA SNHG4 expression in women with endometriosis: a pilot study. Genes. 2023;14(1):152. doi:10.3390/genes14010152
  • Guo J, Zeng H, Li T, et al. mRNA, lncRNA and Circular RNA expression profiles in granulosa cells of infertile women with ovarian endometriosis. Reprod Sci. 2022;29(10):2937–2946. doi:10.1007/s43032-022-00966-3
  • Yao G, He J, Kong Y, et al. Transcriptional profiling of long noncoding RNAs and their target transcripts in ovarian cortical tissues from women with normal menstrual cycles and primary ovarian insufficiency. Mol Reprod Dev. 2019;86(7):847–861. doi:10.1002/mrd.23158
  • Dong L, Xin X, Chang HM, et al. Expression of long noncoding RNAs in the ovarian granulosa cells of women with diminished ovarian reserve using high-throughput sequencing. J Ovarian Res. 2022;15(1):119. doi:10.1186/s13048-022-01053-6
  • Yao G, Kong Y, Yang G, et al. Lnc-GULP1-2:1 affects granulosa cell proliferation by regulating COL3A1 expression and localization. J Ovarian Res. 2021;14(1):16. doi:10.1186/s13048-021-00769-1
  • Li D, Wang X, Li G, et al. LncRNA ZNF674-AS1 regulates granulosa cell glycolysis and proliferation by interacting with ALDOA. Cell Death Discov. 2021;7(1):107. doi:10.1038/s41420-021-00493-1
  • Xia X, Burn MS, Chen Y, et al. The relationship between H19 and parameters of ovarian reserve. Reprod Biol Endocrinol. 2020;18(1):46. doi:10.1186/s12958-020-00578-z
  • Zheng C, Liu S, Qin Z, et al. LncRNA DLEU1 is overexpressed in premature ovarian failure and sponges miR-146b-5p to increase granulosa cell apoptosis. J Ovarian Res. 2021;14(1):151. doi:10.1186/s13048-021-00905-x
  • Yu Y, Zhang Q, Sun K, et al. Long non-coding RNA BBOX1 antisense RNA 1 increases the apoptosis of granulosa cells in premature ovarian failure by sponging miR-146b. Bioengineered. 2022;13(3):6092–6099. doi:10.1080/21655979.2022.2031675
  • Wang X, Zhang X, Dang Y, et al. Long noncoding RNA HCP5 participates in premature ovarian insufficiency by transcriptionally regulating MSH5 and DNA damage repair via YB1. Nucleic Acids Res. 2020;48(8):4480–4491. doi:10.1093/nar/gkaa127
  • Wang F, Chen X, Sun B, et al. Hypermethylation-mediated downregulation of lncRNA PVT1 promotes granulosa cell apoptosis in premature ovarian insufficiency via interacting with Foxo3a. J Cell Physiol. 2021;236(7):5162–5175. doi:10.1002/jcp.30222
  • Sun D, Wang Y, Sun N, et al. LncRNA DANCR counteracts premature ovarian insufficiency by regulating the senescence process of granulosa cells through stabilizing the interaction between p53 and hNRNPC. J Ovarian Res. 2023;16(1):41. doi:10.1186/s13048-023-01115-3
  • Qin C, Xia X, Fan Y, et al. A novel, noncoding-RNA-mediated, post-transcriptional mechanism of anti-Mullerian hormone regulation by the H19/let-7 axis. Biol Reprod. 2019;100(1):101–111. doi:10.1093/biolre/ioy172
  • Lin H, Li Y, Xing W, et al. Genome-wide screening differential long non-coding RNAs expression profiles discloses its roles involved in OHSS development. J Assist Reprod Genet. 2018;2:1473–1482. doi:10.1007/s10815-018-1199-0