261
Views
1
CrossRef citations to date
0
Altmetric
REVIEW

Pediatric Diabetes and Diabetic Ketoacidosis After COVID-19: Challenges Faced and Lessons Learnt

, , , ORCID Icon & ORCID Icon
Pages 281-288 | Received 22 Mar 2023, Accepted 24 Aug 2023, Published online: 04 Sep 2023

References

  • Park JY, Lee YJ, Kim T, et al. Collateral effects of the coronavirus disease 2019 pandemic on lung cancer diagnosis in Korea. BMC Cancer. 2020;20(1):1040. doi:10.1186/s12885-020-07544-3
  • Hrynick TA, Ripoll Lorenzo S, Carter SE. COVID-19 response: mitigating negative impacts on other areas of health. BMJ Glob Health. 2021;6(4):e004110. doi:10.1136/bmjgh-2020-004110
  • Jayashree M, Williams V, Iyer R. Fluid therapy for pediatric patients with diabetic ketoacidosis: current perspectives. Diabetes Metab Syndr Obes. 2019;12:2355–2361. doi:10.2147/DMSO.S194944
  • Tittel SR, Rosenbauer J, Kamrath C, et al. Did the COVID-19 lockdown affect the incidence of pediatric type 1 diabetes in Germany? Diabetes Care. 2020;43(11):e172–e173. doi:10.2337/dc20-1633
  • Ho J, Rosolowsky E, Pacaud D, et al. Diabetic ketoacidosis at type 1 diabetes diagnosis in children during the COVID-19 pandemic. Pediatr Diabetes. 2021;22(4):552–557. doi:10.1111/pedi.13205
  • Kamrath C, Rosenbauer J, Eckert AJ, et al. Incidence of type 1 diabetes in children and adolescents during the COVID-19 pandemic in Germany: results from the DPV Registry. Diabetes Care. 2022;45(8):1762–1771. doi:10.2337/dc21-0969
  • Mameli C, Scaramuzza A, Macedoni M, et al. Type 1 diabetes onset in Lombardy region, Italy, during the COVID-19 pandemic: the double-wave occurrence. EClinicalMedicine. 2021;39:101067. doi:10.1016/j.eclinm.2021.101067
  • Rahmati M, Keshvari M, Mirnasuri S, et al. The global impact of COVID-19 pandemic on the incidence of pediatric new-onset type 1 diabetes and ketoacidosis: a systematic review and meta-analysis. J Med Virol. 2022;94(11):5112–5127. doi:10.1002/jmv.27996
  • Kendall EK, Olaker VR, Kaelber DC, Xu R, Davis PB. Association of SARS-CoV-2 infection with new-onset type 1 diabetes among pediatric patients from 2020 to 2021. JAMA Netw Open. 2022;5(9):e2233014. doi:10.1001/jamanetworkopen.2022.33014
  • Qeadan F, Tingey B, Egbert J, et al. The associations between COVID-19 diagnosis, type 1 diabetes, and the risk of diabetic ketoacidosis: a nationwide cohort from the US using the Cerner Real-World Data. PLoS One. 2022;17(4):e0266809. doi:10.1371/journal.pone.0266809
  • Filippi CM, von Herrath MG. Viral trigger for type 1 diabetes: pros and cons. Diabetes. 2008;57(11):2863–2871. doi:10.2337/db07-1023
  • Müller JA, Groß R, Conzelmann C, et al. SARS-CoV-2 infects and replicates in cells of the human endocrine and exocrine pancreas. Nat Metab. 2021;3(2):149–165. doi:10.1038/s42255-021-00347-1
  • Liu F, Long X, Zhang B, Zhang W, Chen X, Zhang Z. ACE2 expression in pancreas may cause pancreatic damage after SARS-CoV-2 infection. Clin Gastroenterol Hepatol. 2020;18(9):2128–2130.e2. doi:10.1016/j.cgh.2020.04.040
  • Kee J, Thudium S, Renner DM, et al. SARS-CoV-2 disrupts host epigenetic regulation via histone mimicry. Nature. 2022;610(7931):381–388. doi:10.1038/s41586-022-05282-z
  • Patterson CC, Harjutsalo V, Rosenbauer J, et al. Trends and cyclical variation in the incidence of childhood type 1 diabetes in 26 European centres in the 25 year period 1989–2013: a multicentre prospective registration study. Diabetologia. 2019;62(3):408–417. doi:10.1007/s00125-018-4763-3
  • Salmi H, Heinonen S, Hästbacka J, et al. New-onset type 1 diabetes in Finnish children during the COVID-19 pandemic. Arch Dis Child. 2022;107(2):180–185. doi:10.1136/archdischild-2020-321220
  • Gottesman BL, Yu J, Tanaka C, Longhurst CA, Kim JJ. Incidence of new-onset type 1 diabetes among US children during the COVID-19 global pandemic. JAMA Pediatr. 2022;176(4):414–415. doi:10.1001/jamapediatrics.2021.5801
  • Barrett CE, Koyama AK, Alvarez P, et al. Risk for newly diagnosed diabetes >30 days after SARS-CoV-2 infection among persons aged <18 years - United States, March 1, 2020-June 28, 2021. MMWR Morb Mortal Wkly Rep. 2022;71(2):59–65. doi:10.15585/mmwr.mm7102e2
  • Cherubini V, Grimsmann JM, Åkesson K, et al. Temporal trends in diabetic ketoacidosis at diagnosis of paediatric type 1 diabetes between 2006 and 2016: results from 13 countries in three continents. Diabetologia. 2020;63(8):1530–1541. doi:10.1007/s00125-020-05152-1
  • Birkebaek NH, Kamrath C, Grimsmann JM, et al. Impact of the COVID-19 pandemic on long-term trends in the prevalence of diabetic ketoacidosis at diagnosis of paediatric type 1 diabetes: an international multicentre study based on data from 13 national diabetes registries. Lancet Diabetes Endocrinol. 2022;10(11):786–794. doi:10.1016/S2213-8587(22)00246-7
  • Alfayez OM, Aldmasi KS, Alruwais NH, et al. Incidence of diabetic ketoacidosis among pediatrics with type 1 diabetes prior to and during COVID-19 pandemic: a meta-analysis of observational studies. Front Endocrinol. 2022;13:856958. doi:10.3389/fendo.2022.856958
  • Pillai SS, Cao C, Drees CJ, Chu TC, Mason K, Topor LS. Delays in presentation of new onset diabetes at the start of the COVID-19 pandemic. R I Med J. 2022;105(5):46–50.
  • Leiva-Gea I, Fernández CA, Cardona-Hernandez R, et al. Increased presentation of diabetic ketoacidosis and changes in age and month of type 1 diabetes at onset during the COVID-19 pandemic in Spain. J Clin Med. 2022;11(15):4338. doi:10.3390/jcm11154338
  • Elgenidy A, Awad AK, Saad K, et al. Incidence of diabetic ketoacidosis during COVID-19 pandemic: a meta-analysis of 124,597 children with diabetes. Pediatr Res. 2022:1–12. doi:10.1038/s41390-022-02241-2
  • Alaqeel A, Aljuraibah F, Alsuhaibani M, et al. The impact of COVID-19 pandemic lockdown on the incidence of new-onset type 1 diabetes and ketoacidosis among Saudi children. Front Endocrinol. 2021;12:669302. doi:10.3389/fendo.2021.669302
  • Zubkiewicz-Kucharska A, Seifert M, Stępkowski M, Noczyńska A. Diagnosis of type 1 diabetes during the SARS-CoV-2 pandemic: does lockdown affect the incidence and clinical status of patients? Adv Clin Exp Med. 2021;30(2):127–134. doi:10.17219/acem/130359
  • Jafari K, Koves I, Rutman L, Brown JC. Impact of the COVID-19 pandemic on the severity of diabetic ketoacidosis presentations in a tertiary pediatric emergency department. Pediatr Qual Saf. 2022;7(2):e502. doi:10.1097/pq9.0000000000000502
  • Marks BE, Khilnani A, Meyers A, et al. Increase in the diagnosis and severity of presentation of pediatric type 1 and type 2 diabetes during the COVID-19 pandemic. Horm Res Paediatr. 2021;94(7–8):275–284. doi:10.1159/000519797
  • Mavinkurve M, Jalaludin MY, Chan EWL, et al. Is misdiagnosis of type 1 diabetes mellitus in Malaysian children a common phenomenon? Front Endocrinol. 2021;12:606018. doi:10.3389/fendo.2021.606018
  • Nallasamy K, Jayashree M, Singhi S, Bansal A. Low-dose vs standard-dose insulin in pediatric diabetic ketoacidosis: a randomized clinical trial. JAMA Pediatr. 2014;168(11):999–1005. doi:10.1001/jamapediatrics.2014.1211
  • Williams V, Jayashree M, Nallasamy K, Dayal D, Rawat A. 0.9% saline versus Plasma-Lyte as initial fluid in children with diabetic ketoacidosis (SPinK trial): a double-blind randomized controlled trial. Crit Care. 2020;24(1):1. doi:10.1186/s13054-019-2683-3
  • Chow N, Fleming-Dutra K, Gierke R; CDC COVID-19 Response Team. Preliminary estimates of the prevalence of selected underlying health conditions among patients with coronavirus disease 2019 - United States, February 12-March 28, 2020. MMWR Morb Mortal Wkly Rep. 2020;69(13):382–386. doi:10.15585/mmwr.mm6913e2
  • Kountouri A, Korakas E, Ikonomidis I, et al. Type 1 diabetes mellitus in the SARS-CoV-2 pandemic: oxidative stress as a major pathophysiological mechanism linked to adverse clinical outcomes. Antioxidants. 2021;10(5):752. doi:10.3390/antiox10050752
  • Benoit SR, Zhang Y, Geiss LS, Gregg EW, Albright A. Trends in diabetic ketoacidosis hospitalizations and in-hospital mortality - United States, 2000–2014. MMWR Morb Mortal Wkly Rep. 2018;67(12):362–365. doi:10.15585/mmwr.mm6712a3
  • Stevens JS, Bogun MM, McMahon DJ, et al. Diabetic ketoacidosis and mortality in COVID-19 infection. Diabetes Metab. 2021;47(6):101267. doi:10.1016/j.diabet.2021.101267
  • Pasquel FJ, Messler J, Booth R, et al. Characteristics of and mortality associated with diabetic ketoacidosis among US patients hospitalized with or without COVID-19. JAMA Netw Open. 2021;4(3):e211091. doi:10.1001/jamanetworkopen.2021.1091
  • Khan F, Paladino L, Sinert R. The impact of COVID-19 on Diabetic Ketoacidosis patients. Diabetes Metab Syndr. 2022;16(1):102389. doi:10.1016/j.dsx.2022.102389
  • Priyambada L, Wolfsdorf JI, Brink SJ, et al. ISPAD clinical practice consensus guideline: diabetic ketoacidosis in the time of COVID-19 and resource-limited settings-role of subcutaneous insulin. Pediatr Diabetes. 2020;21(8):1394–1402. doi:10.1111/pedi.13118
  • Umpierrez GE, Latif K, Stoever J, et al. Efficacy of subcutaneous insulin lispro versus continuous intravenous regular insulin for the treatment of patients with diabetic ketoacidosis. Am J Med. 2004;117(5):291–296. doi:10.1016/j.amjmed.2004.05.010
  • Umpierrez GE, Cuervo R, Karabell A, Latif K, Freire AX, Kitabchi AE. Treatment of diabetic ketoacidosis with subcutaneous insulin aspart. Diabetes Care. 2004;27(8):1873–1878. doi:10.2337/diacare.27.8.1873
  • Ersöz HO, Ukinc K, Köse M, et al. Subcutaneous lispro and intravenous regular insulin treatments are equally effective and safe for the treatment of mild and moderate diabetic ketoacidosis in adult patients. Int J Clin Pract. 2006;60(4):429–433. doi:10.1111/j.1368-5031.2006.00786.x
  • Della Manna T, Steinmetz L, Campos PR, et al. Subcutaneous use of a fast-acting insulin analog: an alternative treatment for pediatric patients with diabetic ketoacidosis. Diabetes Care. 2005;28(8):1856–1861. doi:10.2337/diacare.28.8.1856
  • Vettoretti M, Cappon G, Acciaroli G, Facchinetti A, Sparacino G. Continuous glucose monitoring: current use in diabetes management and possible future applications. J Diabetes Sci Technol. 2018;12(5):1064–1071. doi:10.1177/1932296818774078
  • Unger J. Continuous glucose monitoring overview: features and evidence. Am J Manag Care. 2022;28(4 Suppl):S60–S68. doi:10.37765/ajmc.2022.89206
  • Health Quality Ontario. Continuous monitoring of glucose for type 1 diabetes: a health technology assessment. Ont Health Technol Assess Ser. 2018;18(2):1–160.
  • Hood KK, DiMeglio LA, Riddle MC. Putting continuous glucose monitoring to work for people with type 1 diabetes. Diabetes Care. 2020;43(1):19–21. doi:10.2337/dci19-0054
  • Tauschmann M, Forlenza G, Hood K, et al. ISPAD clinical practice consensus guidelines 2022: diabetes technologies: glucose monitoring. Pediatr Diabetes. 2022;23(8):1390–1405. doi:10.1111/pedi.13451
  • DeSalvo DJ, Miller KM, Hermann JM, et al. Continuous glucose monitoring and glycemic control among youth with type 1 diabetes: international comparison from the T1D exchange and DPV initiative. Pediatr Diabetes. 2018;19(7):1271–1275. doi:10.1111/pedi.12711
  • Korytkowski M, Antinori-Lent K, Drincic A, et al. A pragmatic approach to inpatient diabetes management during the COVID-19 pandemic. J Clin Endocrinol Metab. 2020;105(9):dgaa342. doi:10.1210/clinem/dgaa342
  • Bila R, Varo R, Madrid L, Sitoe A, Bassat Q. Continuous glucose monitoring in resource-constrained settings for hypoglycaemia detection: looking at the problem from the other side of the coin. Biosensors. 2018;8(2):43. doi:10.3390/bios8020043
  • Gherbon A, Frandes M, Timar R, Timar B. The impact of COVID-19 lockdown on glycemic balance in Romanian patients with type 1 diabetes mellitus. Diabetes Metab Syndr Obes. 2022;15:3403–3413. doi:10.2147/DMSO.S386614
  • Scott SN, Fontana FY, Züger T, Laimer M, Stettler C. Use and perception of telemedicine in people with type 1 diabetes during the COVID-19 pandemic-results of a global survey. Endocrinol Diabetes Metab. 2021;4(1):e00180. doi:10.1002/edm2.180
  • Schiller T, Zornitzki T, Ostrovsky V, et al. Following the COVID-19 experience, many patients with type 1 diabetes wish to use telemedicine in a hybrid format. Int J Environ Res Public Health. 2021;18(21):11309. doi:10.3390/ijerph182111309
  • The Lancet Null. Facing up to long COVID. Lancet. 2020;396(10266):1861. doi:10.1016/S0140-6736(20)32662-3
  • Yang JK, Lin SS, Ji XJ, Guo LM. Binding of SARS coronavirus to its receptor damages islets and causes acute diabetes. Acta Diabetol. 2010;47(3):193–199. doi:10.1007/s00592-009-0109-4
  • Nalbandian A, Sehgal K, Gupta A, et al. Post-acute COVID-19 syndrome. Nat Med. 2021;27(4):601–615. doi:10.1038/s41591-021-01283-z