234
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

A Scoping Review of Gut Microbiome and Bifidobacterium Research in Zimbabwe: Implications for Future Studies

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon &
Pages 483-496 | Received 18 Apr 2023, Accepted 13 Oct 2023, Published online: 18 Dec 2023

References

  • Iddrisu I, Monteagudo-Mera A, Poveda C, et al. Malnutrition and gut microbiota in children. Nutrients. 2021;13(8):2727. doi:10.3390/nu13082727
  • Lin C, Lin Y, Zhang H, et al. Intestinal ‘infant-type’ bifidobacteria mediate immune system development in the first 1000 days of life. Nutrients. 2022;14(7):1498. doi:10.3390/nu14071498
  • Huda MN, Ahmad SM, Alam MJ, et al. Bifidobacterium abundance in early infancy and vaccine response at 2 years of age. Pediatrics. 2019;143:e20181489. doi:10.1542/peds.2018-1489
  • Saturio S, Nogacka AM, Alvarado-Jasso GM, et al. Role of bifidobacteria on infant health. Microorganisms. 2021;9(12):2415. doi:10.3390/microorganisms9122415
  • Wong CB, Iwabuchi N, Xiao J-Z. Exploring the science behind Bifidobacterium breve M-16V in infant health. Nutrient. 2019;11(8):1724. doi:10.3390/nu11081724
  • Cukrowska B, Bierła JB, Zakrzewska M, et al. The relationship between the infant gut microbiota and allergy. the role of bifidobacterium breve and prebiotic oligosaccharides in the activation of anti-allergic mechanisms in early life. Nutrients. 2020;12(4):946. doi:10.3390/nu12040946
  • He F, Ouwehand AC, Isolauri E, et al. Comparison of mucosal adhesion and species identification of bifidobacteria isolated from healthy and allergic infants. FEMS Immunol Med Microbiol. 2001;30(1):43–47. doi:10.1111/j.1574-695X.2001.tb01548.x
  • Gotoh A, Katoh T, Sakanaka M, et al. Sharing of human milk oligosaccharides degradants within bifidobacterial communities in faecal cultures supplemented with Bifidobacterium bifidum. Sci Rep. 2018;8(1):13958. doi:10.1038/s41598-018-32080-3
  • O’Neill I, Schofield Z, Hall LJ, Marchesi JR. Exploring the role of the microbiota member Bifidobacterium in modulating immune-linked diseases. Emerging Top Life Sci 2017;1:333–349. doi:10.1042/ETLS20170058
  • Kozak K, Charbonneau D, Sanozky-Dawes R, et al. Characterization of bacterial isolates from the microbiota of mothers’ breast milk and their infants. Gut Microbes. 2015;6(6):341–351. doi:10.1080/19490976.2015.1103425
  • Yakoob R, Pradeep BV. Bifidobacterium sp as probiotic agent - roles and applications. J Pure Appl Microbiol. 2019;13(3):1407–1417. doi:10.22207/JPAM.13.3.11
  • Phillips S, Watt R, Atkinson T, et al. on behalf of the PEARL study team, The Pregnancy and EARly Life study (PEARL) - a longitudinal study to understand how gut microbes contribute to maintaining health during pregnancy and early life, BMC. Pediatr. 2021;21:357.
  • Walsh C, Lane JA, van Sinderen D, et al. Human milk oligosaccharides: shaping the infant gut microbiota and supporting health. J Funct Foods. 2020;72:104074. doi:10.1016/j.jff.2020.104074
  • Lawson MAE, O’Neill IJ, Kujawska M, et al. Breast milk-derived human milk oligosaccharides promote Bifidobacterium interactions within a single ecosystem. ISME J. 2020;14(2):635–648. doi:10.1038/s41396-019-0553-2
  • Kostopoulos I, Elzinga J, Ottman N, et al. Akkermansia muciniphila uses human milk oligosaccharides to thrive in the early life conditions in vitro. Sci Rep. 2020;10:14330. doi:10.1038/s41598-020-71113-8
  • Kijner S, Cher A, Yassour M. the infant gut commensal Bacteroides dorei presents a generalized transcriptional response to various human milk Oligosaccharides. Front Cell Infect Microbiol. 2022;12:854122. doi:10.3389/fcimb.2022.854122
  • Abrahamse-Berkeveld M, Alles M, Franke-Beckmann E, et al. Infant formula containing galacto-and fructo-oligosaccharides and Bifidobacterium breve M-16V supports adequate growth and tolerance in healthy infants in a randomised, controlled, double-blind, prospective, multicentre study. J Nutr Sci. 2016;5:e42. doi:10.1017/jns.2016.35
  • Hidalgo-Cantabrana C, Delgado S, Ruiz L, et al. Bifidobacteria and their health-promoting effects. Microbiol Spectr. 2017;5(3). doi:10.1128/microbiolspec.BAD-0010-2016.
  • Tojo R, Suárez A, Clemente MG, et al. Intestinal microbiota in health and disease: role of bifidobacteria in gut homeostasis. World J Gastroenterol. 2014;20(41):15163–15176. doi:10.3748/wjg.v20.i41.15163
  • Jordan A, Carding SR, Hall LJ. The early-life gut microbiome and vaccine efficacy. Lancet Microbe. 2022;3:e787–94. doi:10.1016/S2666-5247(22)00185-9
  • Alcon-Giner C, Dalby MJ, Caim S, et al. Microbiota supplementation with Bifidobacterium and Lactobacillus modifies the preterm infant gut microbiota and metabolome: an observational study. Cell Rep Med. 2020;1(5):100077. doi:10.1016/j.xcrm.2020.100077
  • Laursen MF. Gut microbiota development: influence of diet from infancy to toddlerhood. Ann Nutr Metab. 2021;1–14. doi:10.1159/000517912
  • Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021:372:n71. doi:10.1136/bmj.n71.
  • Gough EK, Prendergast AJ, Mutasa KE, et al. The Sanitation Hygiene Infant Nutrition Efficacy (SHINE) trial team, assessing the intestinal microbiota in the SHINE Trial. Clin Infect Dis. 2015;61(suppl 7):S685–702. doi:10.1093/cid/civ850
  • Gough EK, Edens TJ, Geum HM, et al. For SHINE trial team, maternal fecal microbiome predicts gestational age, birth weight and neonatal growth in rural Zimbabwe. EBiomedicine J. 2021;68:103421. doi:10.1016/j.ebiom.2021.103421
  • Robertson RC, Church JA, Edens TJ, et al. SHINE Trial Team, The fecal microbiome and rotavirus vaccine immunogenicity in rural Zimbabwean infants. Vaccine. 2021;39:5391–5400. doi:10.1016/j.vaccine.2021.07.076
  • Robertson RC, Edens TJ, Carr L, et al. The gut microbiome and early-life growth in a population with high prevalence of stunting. Nat Commun. 2023;14:654. doi:10.1038/s41467-023-36135-6
  • Smith LE, Chagwena DT, Bourke C, et al. Child Health, Agriculture and Integrated Nutrition (CHAIN): protocol for a randomised controlled trial of improved infant and young child feeding in rural Zimbabwe. BMJ Open Nutr Metab. 2021;12(12). doi:10.1136/bmjopen-2021-056435
  • Flygel TT, Sovershaeva E, Claassen-Weitz S, et al. BREATHE study team, composition of gut microbiota of children and adolescents with perinatal human immunodeficiency virus infection taking antiretroviral therapy in Zimbabwe. The J of Infect Dis. 2020;221:3.
  • Osakunor DNM, Munk P, Mduluza T, et al. The gut microbiome but not the resistome is associated with urogenital schistosomiasis in preschool-aged children. Commun Biol J. 2020;3:155. doi:10.1038/s42003-020-0859-7
  • Kay GL, Millard A, Sergeant MJ, et al. Differences in the faecal microbiome in schistosoma haematobium infected children vs. uninfected children. PLoS Negl Trop Dis. 2015;9(6):e0003861. doi:10.1371/journal.pntd.0003861
  • Pfavayi LT, Sibanda EN, Baker S, et al. Fungal allergic sensitisation in young rural Zimbabwean children: gut mycobiome and seroreactivity characteristics. Curr Res Microb Sci. 2021;2(2021):100082. doi:10.1016/j.crmicr.2021.100082
  • Katsidzira L, Ocvirk S, Wilson A, et al. Differences in fecal gut microbiota, short-chain fatty acids and bile acids link colorectal cancer risk to dietary changes associated with urbanization among Zimbabweans. Nutr Cancer. 2019;71:8. doi:10.1080/01635581.2019.1602659
  • Bourke CD, Gough EK, Pimundu G, et al. Cotrimoxazole reduces systemic inflammation in HIV infection by altering the gut microbiome and immune activation. Sci Transl Med. 2019;11(486):eaav0537. doi:10.1126/scitranslmed.aav0537
  • Gough EK, Bourke CD, Berejena C, et al. Strain-level analysis of gut-resident pro-inflammatory viridans group Streptococci suppressed by long-term cotrimoxazole prophylaxis among HIV-positive children in Zimbabwe. Gut Microbes. 2020;11(4):1104–1115. doi:10.1080/19490976.2020.1717299
  • Duri K, Gumbo FZ, Munjoma PT, et al.; the UZ-CHS Birth Cohort Team. The University of Zimbabwe College of Health Sciences (UZ-CHS) BIRTH COHORT study: rationale, design and methods. BMC Infect Dis. 20;2020:725. doi:10.1186/s12879-020-05432-6
  • Chandiwana P, Munjoma PT, Mazhandu AJ, et al. Antenatal gut microbiome profiles and effect on pregnancy outcome in HIV infected and HIV uninfected women in a resource limited setting. BMC Microbiol. 2023;23:4. doi:10.1186/s12866-022-02747-z
  • Humphrey JH, Mbuya MNN, Ntozini R, et al. for the Sanitation Hygiene Infant Nutrition Efficacy (SHINE) Trial Team, Independent and combined effects of improved water, sanitation, and hygiene, and improved complementary feeding, on child stunting and anaemia in rural Zimbabwe: a cluster-randomised trial. The Lancet Global Health J. 2019. doi:10.1016/S2214-109X(18)30374-7
  • Holzhausen EA, Nikodemova M, Deblois CL, et al. Assessing the impact of storage time on the stability of stool microbiota richness, diversity, and composition. Gut Pathog. 2021;13(75). doi:10.1186/s13099-021-00470-0
  • Jung D-H, Chung W-H, Seo D-H, et al. Complete genome sequence of Bifidobacterium adolescentis P2P3, a human gut bacterium possessing strong resistant starch-degrading activity, 3. Biotech. 2020;10(2):31. doi:10.1007/s13205-019-2019-7
  • Leggett RM, Alcon-Giner C, Heavens D, et al. Rapid MinION profiling of preterm microbiota and antimicrobial-resistant pathogens. Nat Microbiol. 2020;5(3):430–442. doi:10.1038/s41564-019-0626-z
  • Komiya S, Matsuo Y, Nakagawa S, et al. MinION, a portable long-read sequencer, enables rapid vaginal microbiota analysis in a clinical setting. BMC Med Genomics. 2022;15:68. doi:10.1186/s12920-022-01218-8
  • Pekmez CT, Dragsted LO, Brahe LK. Gut microbiota alterations and dietary modulation in childhood malnutrition—The role of short chain fatty acids. Clin Nutr. 2018;1–16. doi:10.1016/j.clnu.2018.02.014.