221
Views
18
CrossRef citations to date
0
Altmetric
Review

Recent findings within the microbiota–gut–brain–endocrine metabolic interactome

, , , , , & show all
Pages 21-30 | Published online: 22 Feb 2017

References

  • Zheng X, Xie G, Zhao A, et al. The footprints of gut microbial–mammalian co-metabolism. J Proteome Res. 2011;10(12):5512–5522.
  • Xie G, Li X, Li H, Jia W. Toward personalized nutrition: comprehensive phytoprofiling and metabotyping. J Proteome Res. 2013;12(4):1547–1559.
  • Grenham S, Clarke G, Cryan J, Dinan T. Brain–gut–microbe communication in health and disease. Front Physiol. 2011;2:94.
  • Obrenovich M, Flückiger R, Sykes L, Donskey C. The co-metabolism within the gut–brain metabolic interaction: potential targets for drug treatment and design. CNS Neurol Disord Drug Targets. 2016;15(2):127–134.
  • Collins S, Surette M, Bercik P. The interplay between the intestinal microbiota and the brain. Nat Rev Microbiol. 2012;10(11):735–742.
  • Martin F, Montoliu I, Nagy K, et al. Specific dietary preferences are linked to differing gut microbial metabolic activity in response to dark chocolate intake. J Proteome Res. 2012;11(12):6252–6263.
  • Rezzi S, Ramadan Z, Martin F, et al. Human metabolic phenotypes link directly to specific dietary preferences in healthy individuals. J Proteome Res. 2007;6(11):4469–4477.
  • O’Mahony S, Clarke G, Borre Y, Dinan T, Cryan J. Serotonin, tryptophan metabolism and the brain–gut–microbiome axis. Behav Brain Res. 2015;277:32–48.
  • Clarke G, Grenham S, Scully P, et al. The microbiome–gut–brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol Psychiatry. 2012;18(6):666–673.
  • Yolken R, Adamos M, Katsafanas E, et al. Individuals hospitalized with acute mania have increased exposure to antimicrobial medications. Bipolar Disord. 2016;18(5):404–409.
  • Maes M, Kubera M, Leunis J, Berk M. Increased IgA and IgM responses against gut commensals in chronic depression: further evidence for increased bacterial translocation or leaky gut. J Affect Disord. 2012;141(1):55–62.
  • Ait-Belgnaoui A, Durand H, Cartier C, et al. Prevention of gut leakiness by a probiotic treatment leads to attenuated HPA response to an acute psychological stress in rats. Psychoneuroendocrinology. 2012;37(11):1885–1895.
  • Lopez CA, Kingsbury DD, Velazquez EM, Baumler AJ. Collateral damage: microbiota-derived metabolites and immune function in the antibiotic era. Cell Host Microbe. 2014;16(2):156–163.
  • Miller AH, Maletic V, Raison CL. Inflammation and its discontents: the role of cytokines in the pathophysiology of major depression. Biol Psychiatry. 2009;65:732–741.
  • Severance EG, Alaedini A, Yang S, et al. Gastrointestinal inflammation and associated immune activation in schizophrenia. Schizophr Res. 2012;138:48–53.
  • Reigstad C, Salmonson C, Rainey J, et al. Gut microbes promote colonic serotonin production through an effect of short-chain fatty acids on enterochromaffin cells. FASEB J. 2014;29(4):1395–1403.
  • Petra AI, Panagiotidou S, Hatziagelaki E, Stewart JM, Conti P, Theoharides TC. Gut–microbiota–brain axis and its effect on neuropsychiatric disorders with suspected immune dysregulation. Clin Ther. 2015;37(5):984–995.
  • Alonso R, Pisa D, Rábano A, Carrasco L. Alzheimer’s disease and disseminated mycoses. Eur J Clin Microbiol Infect Dis. 2014;33(7):1125–1132.
  • De Palma G, Collins S, Bercik P, Verdu E. The microbiota–gut–brain axis in gastrointestinal disorders: stressed bugs, stressed brain or both? J Physiol. 2014;592(14):2989–2997.
  • Banack S, Caller T, Stommel E. The cyanobacteria derived toxin beta-N-methylamino-L-alanine and amyotrophic lateral sclerosis. Toxins. 2010;2(12):2837–2850.
  • Scheperjans F, Aho V, Pereira P, et al. Gut microbiota are related to Parkinson’s disease and clinical phenotype. Mov Disord. 2014;30(3):350–358.
  • Davari S, Talaei S, Alaei H, Salami M. Probiotics treatment improves diabetes-induced impairment of synaptic activity and cognitive function: behavioral and electrophysiological proofs for microbiome–gut–brain axis. Neuroscience. 2013;240:287–296.
  • Norris V, Molina F, Gewirtz A. Hypothesis: bacteria control host appetites. J Bacteriol. 2012;195(3):411–416.
  • Smith E, Macfarlane G. Enumeration of human colonic bacteria producing phenolic and indolic compounds: effects of pH, carbohydrate availability and retention time on dissimilatory aromatic amino acid metabolism. J Appl Bacteriol. 1996;81(3):288–302.
  • Finegold S. State of the art; microbiology in health and disease. Intestinal bacterial flora in autism. Anaerobe. 2011;17(6):367–368.
  • Bale T, Baram T, Brown A, et al. Early life programming and neurodevelopmental disorders. Biol Psychiatry. 2010;68(4):314–319.
  • Hsiao E, McBride S, Hsien S, et al. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell. 2013;155(7):1451–1463.
  • Mittal V, Ellman L, Cannon T. Gene-environment interaction and covariation in schizophrenia: the role of obstetric complications. Schizophr Bull. 2008;34(6):1083–1094.
  • Ben-Ari Y. Neuropaediatric and neuroarchaeology: understanding development to correct brain disorders. Acta Paediatr. 2013;102(4):331–334.
  • Martin F, Sprenger N, Yap I, et al. Panorganismal gut microbiome−host metabolic crosstalk. J Proteome Res. 2009;8(4):2090–2105.
  • Martin F, Wang Y, Sprenger N, et al. Probiotic modulation of symbiotic gut microbial–host metabolic interactions in a humanized microbiome mouse model. Mol Syst Biol. 2008;4:157.
  • Li M, Wang B, Zhang M, et al. Symbiotic gut microbes modulate human metabolic phenotypes. Proc Natl Acad Sci USA. 2008;105(6):2117–2122.
  • Mulle J, Sharp W, Cubells J. The gut microbiome: a new frontier in autism research. Curr Psychiatry Rep. 2013;15(2):337.
  • Rapoport J, Giedd J, Gogtay N. Neurodevelopmental model of schizophrenia: update 2012. Mol Psychiatry. 2012;17(12):1228–1238.
  • Ming X, Stein T, Barnes V, Rhodes N, Guo L. Metabolic perturbance in autism spectrum disorders: a metabolomics study. J Proteome Res. 2012;11(12):5856–5862.
  • de Theije C, Wopereis H, Ramadan M, et al. Altered gut microbiota and activity in a murine model of autism spectrum disorders. Brain Behav Immun. 2014;37:197–206.
  • Douglas-Escobar M, Elliott E, Neu J. Effect of intestinal microbial ecology on the developing brain. JAMA Pediatr. 2013;167(4):374.
  • Desbonnet L, Clarke G, Shanahan F, Dinan T, Cryan J. Microbiota is essential for social development in the mouse. Mol Psychiatry. 2013;19(2):146–148.
  • Paus T, Keshavan M, Giedd J. Why do many psychiatric disorders emerge during adolescence? Nat Rev Neurosci. 2010;9(12):947–957.
  • Yano J, Yu K, Donaldson G, et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell. 2015;161(2):264–276.
  • Alcock J, Maley C, Aktipis C. Is eating behavior manipulated by the gastrointestinal microbiota? Evolutionary pressures and potential mechanisms. Bioessays. 2014;36(10):940–949.
  • Schele E, Grahnemo L, Anesten F, Hallén A, Bäckhed F, Jansson JO. The gut microbiota reduces leptin sensitivity and the expression of the obesity-suppressing neuropeptides proglucagon (Gcg) and brain-derived neurotrophic factor (Bdnf) in the central nervous system. Endocrinology. 2013;154(10):3643–3651.
  • Griffin J, Wang X, Stanley E. Does our gut microbiome predict cardiovascular risk? A review of the evidence from metabolomics. Circ Cardiovasc Genet. 2015;8(1):187–191.
  • Lee S, An J, Park H, Jung B. Investigation of endogenous metabolic changes in the urine of pseudo germ-free rats using a metabolomic approach. J Chromatogr B Analyt Technol Biomed Life Sci. 2012;887–888:8–18.
  • Velagapudi V, Hezaveh R, Reigstad C, et al. The gut microbiota modulates host energy and lipid metabolism in mice. J Lipid Res. 2009;51(5):1101–1112.
  • Peterson C, Sharma V, Elmén L, Peterson S. Immune homeostasis, dysbiosis and therapeutic modulation of the gut microbiota. Clin Exp Immunol. 2015;179(3):363–377.
  • Weil A, Hohmann E. Fecal microbiota transplant: benefits and risks. Open Forum Infect Dis. 2015;2(1):ofv005.
  • Collins S, Kassam Z, Bercik P. The adoptive transfer of behavioral phenotype via the intestinal microbiota: experimental evidence and clinical implications. Curr Opin Microbiol. 2013;16(3):240–245.
  • Azad M, Bridgman S, Becker A, Kozyrskyj A. Infant antibiotic exposure and the development of childhood overweight and central adiposity. Int J Obes Relat Metab Disord. 2014;38(10):1290–1298.
  • Schéle E, Grahnemo L, Anesten F, Hallén A, Bäckhed F, Jansson J. The gut microbiota reduces leptin sensitivity and the expression of the obesity-suppressing neuropeptides proglucagon (Gcg) and brain-derived neurotrophic factor (Bdnf) in the central nervous system. Endocrinology. 2013;154(10):3643–3651.
  • Serino M, Chabo C, Burcelin R. Intestinal MicrobiOMICS to define health and disease in human and mice. Curr Pharm Biotechnol. 2012;13(5):746–758.
  • Chuang H, Huang Y, Chiu C, et al. Metabolomics characterization of energy metabolism reveals glycogen accumulation in gut–microbiota-lacking mice. J Nutr Biochem. 2012;23(7):752–758.
  • Flint H. Obesity and the gut microbiota. J Clin Gastroenterol. 2011;45:S128–S132.
  • Bäckhed F. Programming of host metabolism by the gut microbiota. Ann Nutr Metab. 2011;58(suppl 2):44–52.
  • Crumeyrolle-Arias M, Jaglin M, Bruneau A, et al. Absence of the gut microbiota enhances anxiety-like behavior and neuroendocrine response to acute stress in rats. Psychoneuroendocrinology. 2014;42:207–217.
  • McCusker R, Kelley K. Immune-neural connections: how the immune system’s response to infectious agents influences behavior. J Exp Biol. 2012;216(1):84–98.
  • Konturek S, Konturek P, Brzozowski T, Konturek J, Pawlik W. From nerves and hormones to bacteria in the stomach; Nobel prize for achievements in gastrology during last century. J Physiol Pharmacol. 2005;56(4):507–530.
  • Goehler L, Gaykema R, Opitz N, Reddaway R, Badr N, Lyte M. Activation in vagal afferents and central autonomic pathways: early responses to intestinal infection with Campylobacter jejuni. Brain Behav Immun. 2005;19(4):334–344.
  • Perez-Burgos A, Wang B, Mao Y, et al. Psychoactive bacteria Lactobacillus rhamnosus (JB-1) elicits rapid frequency facilitation in vagal afferents. Am J Physiol Gastrointest Liver Physiol. 2012;304(2):G211–G220.
  • Matsumoto M, Kibe R, Ooga T, et al. Impact of intestinal microbiota on intestinal luminal metabolome. Sci Rep. 2012;2:233.
  • Evans J, Morris L, Marchesi J. The gut microbiome: the role of a virtual organ in the endocrinology of the host. J Endocrinol. 2013;218(3):R37–R47.
  • Maynard C, Elson C, Hatton R, Weaver C. Reciprocal interactions of the intestinal microbiota and immune system. Nature. 2012;489(7415):231–241.
  • Braniste V, Al-Asmakh M, Kowal C, et al. The gut microbiota influences blood-brain barrier permeability in mice. Sci Transl Med. 2014;6(263):263ra158.
  • Carabotti M, Scirocco A, Maselli M, Severi C. The gut–brain axis: interactions between enteric microbiota, central and enteric nervous systems. Ann Gastroenterol. 2015;28(2):203–209.
  • Mayer E, Savidge T, Shulman R. Brain–gut microbiome interactions and functional bowel disorders. Gastroenterology. 2014;146(6):1500–1512.
  • DiGiulio D. Diversity of microbes in amniotic fluid. Semin Fetal Neonatal Med. 2012;17(1):2–11.
  • Kwak D, Hwang H, Kwon J, Park Y, Kim Y. Co-infection with vaginal Ureaplasma urealyticum and Mycoplasma hominis increases adverse pregnancy outcomes in patients with preterm labor or preterm premature rupture of membranes. J Matern Fetal Neonatal Med. 2014;27(4):333–337.
  • Rogier E, Frantz A, Bruno M, et al. Secretory antibodies in breast milk promote long-term intestinal homeostasis by regulating the gut microbiota and host gene expression. Proc Natl Acad Sci USA. 2014;111(8):3074–3079.
  • Fernández L, Langa S, Martín V, et al. The human milk microbiota: origin and potential roles in health and disease. Pharmacol Res. 2013;69(1):1–10.
  • Christian L, Galley J, Hade E, Schoppe-Sullivan S, Kamp Dush C, Bailey M. Gut microbiome composition is associated with temperament during early childhood. Brain Behav Immun. 2015;45:118–127.
  • Thuny F, Richet H, Casalta J, Angelakis E, Habib G, Raoult D. Vancomycin treatment of infective endocarditis is linked with recently acquired obesity. PLoS One. 2010;5(2):e9074.
  • Koeth R, Wang Z, Levison B, et al. Intestinal microbiota metabolism of l-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med. 2013;19(5):576–585.
  • Sudo N. Microbiome, HPA axis and production of endocrine hormones in the gut. Adv Exp Med Biol. 2014;817:177–194.
  • O’Malley D. Immunomodulation of enteric neural function in irritable bowel syndrome. World J Gastroenterol. 2015;21(24):7362.
  • Strazielle N, Ghersi-Egea JF. Efflux transporters in blood-brain interfaces of the developing brain. Front Neurosci. 2015;9:21.
  • Magrone T, Perez de Heredia F, Jirillo E, Morabito G, Marcos A, Serafini M. Functional foods and nutraceuticals as therapeutic tools for the treatment of diet-related diseases 1. Can J Physiol Pharmacol. 2013;91(6):387–396.
  • Keightley P, Koloski N, Talley N. Pathways in gut–brain communication: evidence for distinct gut-to-brain and brain-to-gut syndromes. Aust N Z J Psychiatry. 2015;49(3):207–214.
  • Looft T, Allen H. Collateral effects of antibiotics on mammalian gut microbiomes. Gut Microbes. 2012;3(5):463–467.
  • Golubeva A, Crampton S, Desbonnet L, et al. Prenatal stress-induced alterations in major physiological systems correlate with gut microbiota composition in adulthood. Psychoneuroendocrinology. 2015;60:58–74.
  • Clarke G, Stilling R, Kennedy P, Stanton C, Cryan J, Dinan T. Minireview: gut microbiota: the neglected endocrine organ. Mol Endocrinol. 2014;28(8):1221–1238.
  • Chen Z, Guo L, Zhang Y, et al. Incorporation of therapeutically modified bacteria into gut microbiota inhibits obesity. J Clin Invest. 2014;124(8):3391–3406.
  • Smitka K, Papezova H, Vondra K, Hill M, Hainer V, Nedvidkova J. The role of “mixed” orexigenic and anorexigenic signals and autoantibodies reacting with appetite-regulating neuropeptides and peptides of the adipose tissue–gut–brain axis: relevance to food intake and nutritional status in patients with anorexia nervosa and bulimia nervosa. Int J Endocrinol. 2013;2013:1–21.
  • Parfrey L, Knight R. Spatial and temporal variability of the human microbiota. Clin Microbiol Infect. 2012;18:5–7.