68
Views
3
CrossRef citations to date
0
Altmetric
Review

CD30: receptor, marker, target

Pages 27-36 | Published online: 10 Jun 2016

References

  • Stein H, Gerdes J, Kirchner H, Schaadt M, Diehl V. Hodgkin and Sternberg-Reed cell antigen(s) detected by an antiserum to a cell line (L428) derived from Hodgkin disease. Int J Cancer. 1981;28(4):425–429.
  • Dürkop H, Latza U, Hummel M, Eitelbach F, Seed B, Stein H. Molecular cloning and expression of a new member of the nerve growth factor receptor family that is characteristic for Hodgkin’s disease. Cell. 1992; 68(3):421–427.
  • Smith CA, Gruss HJ, Davis T, et al. CD30 antigen, a marker for Hodgkin’s lymphoma, is a receptor whose ligand defines an emerging family of cytokines with homology to TNF. Cell. 1993;73(7):1349–1360.
  • Gedrich RW, Gilfillan MC, Duckett CS, Van Dongen JL, Thompson CB. CD30 contains two binding sites with different specificities for members of the tumor necrosis factor receptor-associated factor family of signal transducing proteins. J Biol Chem. 1996;271(22):12852–12858.
  • Ellis TM, Simms PE, Slivnick DJ, Jäck HM, Fisher RI. CD30 is a signal-transducing molecule that defines a subset of human activated CD45RO+ T cells. J Immunol. 1993;151(5):2380–2389.
  • Gilfillan MC, Noel PJ, Podack ER, Reiner SL, Thompson CB. Expression of the costimulatory receptor CD30 is regulated by both CD28 and cytokines. J Immunol. 1998;160(5):2180–2187.
  • Stein H, Gerdes J, Schwab U, et al. Identification of Hodgkin and Sternberg-Reed cells as a unique cell type derived from a newly-detected small-cell population. Int J Cancer. 1982;30(4):445–459.
  • Cerutti A, Schaffer A, Goodwin R, et al. Engagement of CD153 (CD30L) by CD30+ T cells inhibits class switch DNA recombination and antibody production in Human IgD+ IgM+ B cells. J Immunol. 2000;165(2):786–794.
  • Kennedy MK, Willis CR, Armitage RJ. Deciphering CD30 ligand biology and its role in humoral immunity. Immunology. 2006;118(2):143–152.
  • Falini B, Pileri S, Pizzolo G, et al. CD30 (Ki-1) molecule: a new cytokine receptor of the tumor necrosis factor receptor superfamily as a tool for diagnosis and immunotherapy. Blood. 1995;85(1):1–14.
  • Pizzolo G, Vinante F, Chilosi M, et al. Serum levels of soluble CD30 molecule (Ki-1 antigen) in Hodgkin’s disease: relationship with disease activity and clinical stage. Br J Haematol. 1990;75(2):282–284.
  • Nadali G, Vinante F, Stein H, et al. Serum levels of the soluble form of CD30 molecule as a tumor marker in CD30+ anaplastic large-cell lymphoma. J Clin Oncol. 1995;13(6):1355–1360.
  • Caligaris-Cappio F, Bertero MT, Converso M, et al. Circulating levels of soluble CD30, a marker of cells producing Th2-type cytokines, are increased in patients with systemic lupus erythematosus and correlate with disease activity. Clin Exp Rheumatol. 1995;13(3):339–343.
  • Latza U, Foss HD, Dürkop H, et al. CD30 antigen in embryonal carcinoma and embryogenesis and release of the soluble molecule. AmJ Pathol. 1995;146(2):463–471.
  • Amakawa R, Hakem A, Kundig TM, et al. Impaired negative selection of T cells in Hodgkin’s disease antigen CD30-deficient mice. Cell. 1996;84(4):551–562.
  • Kishimoto H, Sprent J. Several different cell surface molecules control negative selection of medullary thymocytes. J Exp Med. 1999;190(1):65–73.
  • Flórido M, Borges M, Yagita H, Appelberg R. Contribution of CD30/CD153 but not of CD27/CD70, CD134/OX40L, or CD137/4-1BBL to the optimal induction of protective immunity to Mycobacterium avium. J Leukoc Biol. 2004;76(5):1039–1046.
  • Kurts C, Carbone FR, Krummel MF, Koch KM, Miller JF, Heath WR. Correction: signalling through CD30 protects against autoimmune diabetes mediated by CD8 T cells. Nature. 2000;407(6802):413.
  • Gaspal FM, Kim MY, McConnell FM, Raykundalia C, Bekiaris V, Lane PJ. Mice deficient in OX40 and CD30 signals lack memory antibody responses because of deficient CD4 T cell memory. J Immunol. 2005;174(7):3891–3896.
  • Hoffmann A, Baltimore D. Circuitry of nuclear factor κB signaling. Immunol Rev. 2006;210:171–186.
  • Kocab AJ, Duckett CS. Inhibitor of apoptosis proteins as intracellular signaling intermediates. FEBS J. 2016;283(2):221–231.
  • Aizawa S, Nakano H, Ishida T, et al. Tumor necrosis factor receptor associated factor (TRAF)5 and TRAF2 are involved in CD30-mediated NFKappaB activation. J Biol Chem. 1997;272(4):2042–2045.
  • Buchan SL, Al-Shamkhani A. Distinct motifs in the intracellular domain of human CD30 differentially activate canonical and alternative transcription factor NF-κB signaling. PLOS One. 2012;7(9):e45244.
  • Wendtner CM, Schmitt B, Gruss HJ, et al. CD30 ligand signal transduction involves activation of a tyrosine kinase and of mitogen-activated protein kinase in a Hodgkin’s lymphoma cell line. Cancer Res. 1995;55(18):4157–4161.
  • Wright CW, Duckett CS. The aryl hydrocarbon nuclear translocator alters CD30-mediated NF-κB-dependent transcription. Science. 2009; 323(5911):251–255.
  • Thakar NY, Ovchinnikov DA, Hastie ML, Kobe B, Gorman JJ, Wolvetang EJ. TRAF2 recruitment via T61 in CD30 drives NF-κB activation and enhances hESC survival and proliferation. Mol Biol Cell. 2015;26(5):993–1006.
  • Schaadt M, Diehl V, Stein H, Fonatsch C, Kirchner H. Two neoplastic cell lines with unique features derived from Hodgkin’s disease. Int J Cancer. 1980;26(6):723–731.
  • Schwab U, Stein H, Gerdes J, et al. Production of a monoclonal antibody specific for Hodgkin and Sternberg-Reed cells of Hodgkin’s disease and a subset of normal lymphoid cells. Nature. 1982;299(5878):65–67.
  • Schwarting R, Gerdes J, Dürkop H, Falini B, Pileri S, Stein H. Ber-H2: a new anti-Ki-1 (CD30) monoclonal antibody directed at a formol-resistant epitope. Blood. 1989;74(5):1678–1689.
  • Küppers R, Rajewsky K, Zhao M, et al. Hodgkin disease: Hodgkin and Reed-Sternberg cells picked from histological sections show clonal immunoglobulin gene rearrangements and appear to be derived from B cells at various stages of development. Proc Natl Acad Sci U S A. 1994;91(23):10962–10966.
  • Kanzler H, Küppers R, Hansmann ML, Rajewsky K. Hodgkin and Reed-Sternberg cells in Hodgkin’s disease represent the outgrowth of a dominant tumor clone derived from (crippled) germinal center B cells. J Exp Med. 1996;814(4):1495–1505.
  • Vockerodt M, Soares M, Kanzler H, et al. Detection of clonal Hodgkin and Reed-Sterberg cells with identical somatically mutated and rearranged VH. Blood. 1998;92(8):2899–2907.
  • Leroy X, Augusto D, Leteurtre E, Gosselin B. CD30 and CD117 (c-kit) used in combination are useful for distinguishing embryonal carcinoma from seminoma. J Histochem Cytochem. 2002;50(2):283–285.
  • Dürkop H, Foss HD, Eitelbach F, et al. Expression of CD30 antigen on non-lymphoid tissues and cells. J Pathol. 2000;190(5):613–618.
  • NCCN [homepage on the Internet]. NCCN Guidelines Testicular Cancer version 1.2016. Available from: www.nccn.org. Accessed March 24, 2016.
  • Mechtersheimer G, Möller P. Expression of Ki-1 antigen (CD30) in mesenchymal tumors. Cancer. 1990;66(8):1732–1737.
  • Mariño-Enríquez A, Wang WL, Roy A, et al. Epithelioid inflammatory myofibroblastic sarcoma: an aggressive intra-abdominal variant of inflammatory myofibroblastic tumor with nuclear membrane or perinuclear ALK. Am J Surg Pathol. 2011;35(1):135–144.
  • Stein H, Marafioti T, Foss HD, et al. Downregulation of BOB.1 and Oct2 in classical Hodgkin disease but not in lymphocyte predominant Hodgkin disease correlates with immunoglobulin transcription. Blood. 2001;97(2):496–501.
  • Küpper R. The biology of Hodgkin’s lymphoma. Nat Rev Cancer. 2009;9(1):15–27.
  • Scheeren FA, Diehl SA, Smit LA, et al. IL-21 is expressed in Hodgkin lymphoma and activates STAT5; evidence that activated STAT5 is required for Hodgkin lymphomagenesis. Blood. 2008; 111(9):4706–4715.
  • Mir SS, Richter BWM, Duckett CS. Differential effects of CD30 activation in anaplastic large cell lymphoma and Hodgkin disease cells. Blood. 2000;96(13):4307–4312.
  • Hirsch B, Hummel M, Bentink S, et al. CD30-induced signaling is absent in Hodgkin’s cells but present in anaplastic large cell lymphoma cells. Am J Pathol. 2008;172(2):510–520.
  • Wright CW, Rumble JM, Duckett CS. CD30 activates both the canonical and alternative NF-kB pathways in anaplastic large cell lymphoma cells. J Biol Chem. 2007;282(14):110252–110262.
  • Bargou RC, Leng C, Krappmann D, et al. High-level nuclear NF-kB and Oct-2 is a common feature of cultured Hodgkin/Reed-Sternberg cells. Blood. 1996;87(10):4340–4347.
  • Joos S, Küpper M, Ohl S, et al. Genomic imbalances including amplification of the tyrosine kinase gene JAK2 in CD30+ Hodgkin cells. Cancer Res. 2000;60(3):549–552.
  • Barth TFE, Martin-Subero JI, Joos S, et al. Gains of 2p involving the REL locus correlate with nuclear c-Rel protein accumulation in neoplastic cells of classical Hodgkin lymphoma. Blood. 2003; 101(9):3681–3686.
  • Krappmann D, Emmerich F, Kordes U, Scharschmidt E, Dörken B, Scheidereit C. Molecular mechanisms of constitutive NF-κB/Rel activation in Hodgkin/Reed-Sternberg cells. Oncogene. 1999;18(4):943–953.
  • Jungnickel B. Clonal deleterious mutations in the IκBα gene in the malignant cells in Hodgkin’s disease. J Exp Med. 2000;191(2):395–401.
  • Hinz M, Lemke P, Anagnostopoulos I, et al. Nuclear factor κB-dependent gene expression profiling of Hodgkin’s disease tumor cells, pathogenetic significance, and link to constitutive signal transducer and activator of transcription 5a activity. J Exp Med. 2002;196(5):605–617.
  • Swerdlow SH, Campo E, Harris NL, et al. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. 4th ed. Geneva: WHO Press; 2008.
  • Stein H, Foss HD, Dürkop H, et al. CD30+ anaplastic large cell lymphoma: a review of its histopathologic, genetic, and clinical features. Blood. 2000;96(12):3681–3695.
  • Atsaves V, Lekakis L, Drakos E, et al. The oncogenic JUNB/CD30 axis contributes to cell cycle deregulation in ALK+ anaplastic large cell lymphoma. Br J Haematol. 2014;167(4):514–523.
  • Isaacson PG. Enteropathy-associated T-cell lymphoma and other primary intestinal T-cell lymphomas. In: Jaffe ES, Harris NL, Vardiman JW, Campo E, Arber DA, editors. Hematopathology. Missouri: Elsevier Saunders; 2011:580–587.
  • Sabattini E, Pizzi M, Tabanelli V, et al. CD30 expression in peripheral T-cell lymphomas. Haematologica. 2013;98(8):e81–e82.
  • Harris NL. Shades of gray between large B-cell lymphomas and Hodgkin lymphomas: differential diagnosis and biological implications. Mod Pathol. 2013;26(Suppl 1):S57–S70.
  • Yao J, Gottesman SRS, Ayalew G, Braverman AS, Axiotis CA. Loss of Foxp3 is associated with CD30 expression in the anaplastic large cell subtype of ATLL in US Caribbean patients. Am J Surg Pathol. 2013;37(9):1407–1412.
  • Ansell SM, Horwitz SM, Engert A, et al. Phase I/II study of an anti-CD30 monoclonal antibody (MDX-060) in Hodgkin’s lymphoma and anaplastic large cell lymphoma. J Clin Oncol. 2007;25(19):2764–2769.
  • Bartlett NL, Younes A, Carabasi MH, et al. A phase I multidose study of SGN-30 immunotherapy in patients with refractory or recurrent CD30+ hematological malignancies. Blood. 2008;111(4):1848–1854.
  • Younes A, Gopal AK, Smith SC, et al. Results of a pivotal phase II study of brentuximab vedotin for patients with relapsed or refractory Hodgkin’s lymphoma. J Clin Oncol. 2012;30(18):2183–2189.
  • Francisco JA, Cerveny CG, Meyer DL, et al. cAC10-vcMMAE, an anti-CD30-monomethyl auristatin E conjugate with potent and selective antitumor activity. Blood. 2003;102(4):1458–1465.
  • Moskowitz CH, Nademanee A, Masszi T, et al. Brentuximab vedotin as consolidation therapy after autologous stem-cell transplantation in patients with Hodgkin’s lymphoma at risk of relapse or progression (AETHERA): a randomized, double-blind, placebo-controlled, phase 3 trial. Lancet. 2015;385(9980):1853–1862.
  • Pro B, Advani R, Brice P, et al. Brentuximab vedotin (SGN-35) in patients with relapsed or refractory systemic anaplastic large-cell lymphoma: results of a phase II study. J Clin Oncol. 2012;30(18):2190–2196.