155
Views
5
CrossRef citations to date
0
Altmetric
Original Research

SNP Array as a Tool for Prenatal Diagnosis of Congenital Heart Disease Screened by Echocardiography: Implications for Precision Assessment of Fetal Prognosis

ORCID Icon, , , , & ORCID Icon
Pages 345-355 | Published online: 27 Jan 2021

References

  • Tanner K, Sabrine N, Wren C. Cardiovascular malformations among preterm infants. Pediatrics. 2005;116(6):e833–e838. doi:10.1542/peds.2005-0397
  • Liu Y, Chen S, Zühlke L, et al. Global birth prevalence of congenital heart defects 1970–2017: updated systematic review and meta-analysis of 260 studies. Int J Epidemiol. 2019;48(2):455–463. doi:10.1093/ije/dyz009
  • Bouma BJ, Mulder BJ. Changing landscape of congenital heart disease. Circ Res. 2017;120(6):908–922. doi:10.1161/CIRCRESAHA.116.309302
  • Rossano JW. Congenital heart disease: a global public health concern. Lancet Child Adolesc Health. 2020;4(3):168–169. doi:10.1016/S2352-4642(19)30429-8
  • Meller CH, Grinenco S, Aiello H, et al. Congenital heart disease, prenatal diagnosis and management. Arch Argent Pediatr. 2020;118(2):e149–e161. doi:10.5546/aap.2020.eng.e149
  • Simmons MA, Brueckner M. The genetics of congenital heart disease… understanding and improving long-term outcomes in congenital heart disease. Curr Opin Pediatr. 2017;29(5):520–528. doi:10.1097/MOP.0000000000000538
  • Oster ME, Knight JH, Suthar D, Amin O, Kochilas LK. Long-term outcomes in single-ventricle congenital heart disease. Circulation. 2018;138(23):2718–2720. doi:10.1161/CIRCULATIONAHA.118.036821
  • Kovacevic A, Simmelbauer A, Starystach S, et al. Counseling for prenatal congenital heart disease-recommendations based on empirical assessment of counseling success. Front Pediatr. 2020;8:26. doi:10.3389/fped.2020.00026
  • Hopkins MK, Dugoff L, Kuller JA. Congenital heart disease: prenatal diagnosis and genetic associations. Obstet Gynecol Surv. 2019;74(8):497–503. doi:10.1097/OGX.0000000000000702
  • Gelb BD, Chung WK. Complex genetics and the etiology of human congenital heart disease. Cold Spring Harb Perspect Med. 2014;4(7):a013953. doi:10.1101/cshperspect.a013953
  • Blue GM, Kirk EP, Giannoulatou E, et al. Advances in the genetics of congenital heart disease: a clinician’s guide. J Am Coll Cardiol. 2017;69(7):859–870. doi:10.1016/j.jacc.2016.11.060
  • Williams K, Carson J, Lo C. Genetics of congenital heart disease. Biomolecules. 2019;9(12):E879. doi:10.3390/biom9120879
  • Edwards JJ, Gelb BD. Genetics of congenital heart disease. Curr Opin Cardiol. 2016;31(3):235–241. doi:10.1097/HCO.0000000000000274
  • Yuan S, Zaidi S, Brueckner M. Congenital heart disease: emerging themes linking genetics and development. Curr Opin Genet Dev. 2013;23(3):352–359. doi:10.1016/j.gde.2013.05.004
  • Calcagni G, Unolt M, Digilio MC, et al. Congenital heart disease and genetic syndromes: new insights into molecular mechanisms. Expert Rev Mol Diagn. 2017;17(9):861–870. doi:10.1080/14737159.2017.1360766
  • Wimalasundera RC, Gardiner HM. Congenital heart disease and aneuploidy. Prenat Diagn. 2004;24(13):1116–1122. doi:10.1002/pd.1068
  • Paladini D, Tartaglione A, Agangi A, et al. The association between congenital heart disease and down syndrome in prenatal life. Ultrasound Obstet Gynecol. 2000;15(2):104–108. doi:10.1046/j.1469-0705.2000.00027.x
  • Kosiv KA, Gossett JM, Bai S, Collins RT. Congenital heart surgery on in-hospital mortality in trisomy 13 and 18. Pediatrics. 2017;140(5):e20170772. doi:10.1542/peds.2017-0772
  • Cooper DS, Riggs KW, Zafar F, et al. Cardiac surgery in patients with trisomy 13 and 18: an analysis of the society of thoracic surgeons congenital heart surgery database. J Am Heart Assoc. 2019;8(13):e012349. doi:10.1161/JAHA.119.012349
  • Kim HK, Gottliebson W, Hor K, et al. Cardiovascular anomalies in turner syndrome: spectrum, prevalence, and cardiac MRI findings in a pediatric and young adult population. AJR Am J Roentgenol. 2011;196(2):454–460. doi:10.2214/AJR.10.4973
  • Taylor MJ, Josifek K. Multiple congenital anomalies, thymic dysplasia, severe congenital heart disease, and oligosyndactyly with a deletion of the short arm of chromosome 5. Am J Med Genet. 1981;9(1):5–11. doi:10.1002/ajmg.1320090103
  • Goldmuntz E. 22q11.2 Deletion syndrome and congenital heart disease. Am J Med Genet C Semin Med Genet. 2020;184(1):64–72. doi:10.1002/ajmg.c.31774
  • Ko JM. Genetic syndromes associated with congenital heart disease. Korean Circ J. 2015;45(5):357–361. doi:10.4070/kcj.2015.45.5.357
  • Bravo-Valenzuela NJ, Peixoto AB, AraujoJúnior E. Prenatal diagnosis of congenital heart disease: a review of current knowledge. Indian Heart J. 2018;70(1):150–164. doi:10.1016/j.ihj.2017.12.005
  • Killen SA, Mouledoux JH, Kavanaugh-McHugh A. Pediatric prenatal diagnosis of congenital heart disease. Curr Opin Pediatr. 2014;26(5):536–545. doi:10.1097/MOP.0000000000000136
  • Connor JA, Hinton RB, Miller EM, Sund KL, Ruschman JG, Ware SM. Genetic testing practices in infants with congenital heart disease. Congenit Heart Dis. 2014;9(2):158–167. doi:10.1111/chd.12112
  • Nagy O, Szakszon K, Biró BO, et al. Copy number variants detection by microarray and multiplex ligation-dependent probe amplification in congenital heart diseases. J Biotechnol. 2019;299:86–95. doi:10.1016/j.jbiotec.2019.04.025
  • Miller DT, Adam MP, Aradhya S, et al. Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. Am J Hum Genet. 2010;86(5):749–764. doi:10.1016/j.ajhg.2010.04.006
  • Werling AM, Grünblatt E, Oneda B, et al. High-resolution chromosomal microarray analysis for copy-number variations in high-functioning autism reveals large aberration typical for intellectual disability. J Neural Transm (Vienna). 2020;127(1):81–94. doi:10.1007/s00702-019-02114-9
  • Hu T, Zhang Z, Wang J, et al. Chromosomal aberrations in pediatric patients with developmental delay/intellectual disability: a single-center clinical investigation. Biomed Res Int. 2019;2019:9352581. doi:10.1155/2019/9352581
  • Jang W, Kim Y, Han E, et al. Chromosomal microarray analysis as a first-tier clinical diagnostic test in patients with developmental delay/intellectual disability, autism spectrum disorders, and multiple congenital anomalies: a prospective multicenter study in Korea. Ann Lab Med. 2019;39(3):299–310. doi:10.3343/alm.2019.39.3.299
  • Wu XL, Li R, Fu F, et al. Chromosome microarray analysis in the investigation of children with congenital heart disease. BMC Pediatr. 2017;17(1):117. doi:10.1186/s12887-017-0863-3
  • Wang Y, Cao L, Liang D, et al. Prenatal chromosomal microarray analysis in fetuses with congenital heart disease: a prospective cohort study. Am J Obstet Gynecol. 2018;218(2):244.e1–244.e17. doi:10.1016/j.ajog.2017.10.225
  • Zhu X, Li J, Ru T, et al. Identification of copy number variations associated with congenital heart disease by chromosomal microarray analysis and next-generation sequencing. Prenat Diagn. 2016;36(4):321–327. doi:10.1002/pd.4782
  • Goldmuntz E, Paluru P, Glessner J, et al. Microdeletions and microduplications in patients with congenital heart disease and multiple congenital anomalies. Congenit Heart Dis. 2011;6(6):592–602. doi:10.1111/j.1747-0803.2011.00582.x
  • Lin CZ, Qi BR, Hu JS, Huang YD, Huang XQ. Chromosome 15q13 microduplication in a fetus with cardiac rhabdomyoma: a case report. Mol Cytogenet. 2019;12(1):24. doi:10.1186/s13039-019-0437-1
  • Lin CZ, Qi BR, Hu JS, Huang XQ. A fetus with kabuki syndrome 2 detected by chromosomal microarray analysis. Int J Clin Exp Pathol. 2020;13(2):302–306.
  • Sukenik-Halevy R, Sukenik S, Koifman A, et al. Clinical aspects of prenatally detected congenital heart malformations and the yield of chromosomal microarray analysis. Prenat Diagn. 2016;36(13):1185–1191. doi:10.1002/pd.4954
  • Wu X, Fu F, Li R, et al. Clinical value of genome-wide high resolution chromosomal microarray analysis in etiological study of fetuses with congenital heart defects. Zhonghua Fu Chan Ke Za Zhi. 2014;49(12):893–898.
  • Xia Y, Yang Y, Huang S, Wu Y, Li P, Zhuang J. Clinical application of chromosomal microarray analysis for the prenatal diagnosis of chromosomal abnormalities and copy number variations in fetuses with congenital heart disease. Prenat Diagn. 2018;38(6):406–413. doi:10.1002/pd.5249
  • Lalani SR, Belmont JW. Genetic basis of congenital cardiovascular malformations. Eur J Med Genet. 2014;57(8):402–413. doi:10.1016/j.ejmg.2014.04.010
  • Sullivan KE. Chromosome 22q11.2 deletion syndrome and DiGeorge syndrome. Immunol Rev. 2019;287(1):186–201. doi:10.1111/imr.12701
  • Huber J, Peres VC, de Castro AL. Molecular screening for 22Q11.2 deletion syndrome in patients with congenital heart disease. Pediatr Cardiol. 2014;35(8):1356–1362. doi:10.1007/s00246-014-0936-0
  • Hou HT, Chen HX, Wang XL, et al. Genetic characterisation of 22q11.2 variations and prevalence in patients with congenital heart disease. Arch Dis Child. 2020;105(4):367–374. doi:10.1136/archdischild-2018-316634
  • Di Matteo F, Bettin P, Ferrari G, et al. 22q11.2 microduplication syndrome and juvenile glaucoma. Ophthalmic Genet. 2018;39(4):532–538. doi:10.1080/13816810.2018.1484926
  • Praticò AD, Falsaperla R, Rizzo R, Ruggieri M, Verrotti A, Pavone P. A new patient with potocki-lupski syndrome: a literature review. J Pediatr Genet. 2018;7(1):29–34. doi:10.1055/s-0037-1604479
  • Skaar DA, Jirtle RL. Analysis of imprinted gene regulation. Methods Mol Biol. 2017;1589:161–183. doi:10.1007/7651_2015_264
  • Yingjun X, Zhiyang H, Linhua L, et al. Chromosomal uniparental disomy 16 and fetal intrauterine growth restriction. Eur J Obstet Gynecol Reprod Biol. 2017;211:1–7. doi:10.1016/j.ejogrb.2016.12.019
  • Breman A, Pursley AN, Hixson P, et al. Prenatal chromosomal microarray analysis in a diagnostic laboratory; experience with >1000 cases and review of the literature. Prenat Diagn. 2012;32(4):351–361. doi:10.1002/pd.3861
  • Song T, Wan S, Li Y, et al. Detection of copy number variants using chromosomal microarray analysis for the prenatal diagnosis of congenital heart defects with normal karyotype. J Clin Lab Anal. 2019;33(1):e22630. doi:10.1002/jcla.22630
  • Digilio MC, Marino B. What is new in genetics of congenital heart defects? Front Pediatr. 2016;4:120. doi:10.3389/fped.2016.00120
  • Smith AE, Jnah A. Chromosome 16p13.11 microdeletion syndrome in a newborn: a case study. Neonatal Netw. 2018;37(5):303–309. doi:10.1891/0730-0832.37.5.303
  • Dolcetti A, Silversides CK, Marshall CR, et al. 1q21.1 Microduplication expression in adults. Genet Med. 2013;15(4):282–289. doi:10.1038/gim.2012.129
  • Digilio MC, Bernardini L, Consoli F, et al. Congenital heart defects in recurrent reciprocal 1q21.1 deletion and duplication syndromes: rare association with pulmonary valve stenosis. Eur J Med Genet. 2013;56(3):144–149. doi:10.1016/j.ejmg.2012.12.004
  • Xavier J, Zhou B, Bilan F, et al. 1q21.1 microduplication: large verbal-nonverbal performance discrepancy and ddPCR assays of HYDIN/HYDIN2 copy number. NPJ Genom Med. 2018;3(1):24. doi:10.1038/s41525-018-0059-2
  • Sun G, Tan Z, Fan L, Wang J, Yang Y, Zhang W. 1q21.1 microduplication in a patient with mental impairment and congenital heart defect. Mol Med Rep. 2015;12(4):5655–5658. doi:10.3892/mmr.2015.4166
  • Mellis R, Chandler N, Chitty LS. Next-generation sequencing and the impact on prenatal diagnosis. Expert Rev Mol Diagn. 2018;18(8):689–699. doi:10.1080/14737159.2018.1493924
  • Tsai GJ, Cameron CA, Czerwinski JL, Mendez-Figueroa H, Peterson SK, Noblin SJ. Attitudes towards prenatal genetic counseling, prenatal genetic testing, and termination of pregnancy among southeast and east asian women in the United States. J Genet Couns. 2017;26(5):1041–1058. doi:10.1007/s10897-017-0084-9