214
Views
5
CrossRef citations to date
0
Altmetric
Review

Shedding Light On The Human Auditory Cortex: A Review Of The Advances In Near Infrared Spectroscopy (NIRS)

&
Pages 31-42 | Published online: 02 Oct 2019

References

  • Saliba J, Bortfeld H, Levitin DJ, Oghalai JS. Functional near-infrared spectroscopy for neuroimaging in cochlear implant recipients. Hear Res. 2016;338:64–75. doi:10.1016/j.heares.2016.02.005
  • Quaresima V, Bisconti S, Ferrari M. A brief review on the use of functional near-infrared spectroscopy (fNIRS) for language imaging studies in human newborns and adults. Brain Lang. 2012;121(2):79–89. doi:10.1016/j.bandl.2011.03.009
  • Smith M. Shedding light on the adult brain: a review of the clinical applications of near-infrared spectroscopy. Philos Trans R Soc A. 2011;369(1955):4452–4469. doi:10.1098/rsta.2011.0242
  • Sfareni R, Boffi A, Quaresima V, Ferrari M. Near infrared absorption spectra of human deoxy-and oxyhaemoglobin in the temperature range 20–40 C. Biochim Biophys Acta Bioenerg. 1997;1340(2):165–169. doi:10.1016/S0167-4838(97)00042-3
  • Wray S, Cope M, Delpy DT, Wyatt JS, Reynolds EOR. Characterization of the near infrared absorption spectra of cytochrome aa3 and haemoglobin for the non-invasive monitoring of cerebral oxygenation. Biochim Biophys Acta Bioenerg. 1998;933(1):184–192. doi:10.1016/0005-2728(88)90069-2
  • Scholkmann F, Kleiser S, Metz AJ, et al. A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology. Neuroimage. 2014;85:6–27. doi:10.1016/j.neuroimage.2013.05.004
  • Hoppe-Seyler PM. Stokes and haemoglobin. Biol Chem Hoppe Seyler. 1995;376(8):449–450.
  • Hufner G, der Sauerstoff N. capacitat des Blutfarbstoffs’. Arch Anat Physiol Physiol Abt. 1894;130–176.
  • Jobsis FF. Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science. 1977;198(4323):1264–1267. doi:10.1126/science.929199
  • Chance B, Zhuang Z, UnAh C, Alter C, Lipton L. Cognition-activated low-frequency modulation of light absorption in human brain. Proc Natl Acad Sci. 1993;90(8):3770–3774. doi:10.1073/pnas.90.8.3770
  • Hoshi Y, Tamura M. Dynamic multichannel near-infrared optical imaging of human brain activity. J Appl Physiol. 1993;75(4):1842–1846. doi:10.1152/jappl.1993.75.4.1842
  • Kato T, Kamei A, Takashima S, Ozaki T. Human visual cortical function during photic stimulation monitoring by means of near-infrared spectroscopy. J Cereb Blood Flow Metab. 1993;13(3):516–520. doi:10.1038/jcbfm.1993.66
  • Villringer A, Planck J, Hock C, Schleinkofer L, Dirnagl U. Near infrared spectroscopy (NIRS): a new tool to study hemodynamic changes during activation of brain function in human adults. Neurosci Lett. 1993;154(1–2):101–104. doi:10.1016/0304-3940(93)90181-j
  • Maki A, Yamashita Y, Ito Y, Watanabe E, Mayanagi Y, Koizumi H. Spatial and temporal analysis of human motor activity using noninvasive NIR topography. Med Phys. 1995;22(12):1997–2005. doi:10.1118/1.597496
  • Ferrari M, Quaresima V. A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application. Neuroimage. 2012;63(2):921–935. doi:10.1016/j.neuroimage.2012.03.049
  • Sakatani K, Chen S, Lichty W, Zuo H, Wang Y-P. Cerebral blood oxygenation changes induced by auditory stimulation in newborn infants measured by near infrared spectroscopy. Early Hum Dev. 1999;55(3):229–236.
  • Zaramella P, Freato F, Amigoni A, et al. Brain auditory activation measured by near-infrared spectroscopy (NIRS) in neonates. Pediatr Res. 2001;49(2):213. doi:10.1203/00006450-200102000-00014
  • Benaron DA, Hintz SR, Villringer A, et al. Noninvasive functional imaging of human brain using light. J Cereb Blood Flow Metab. 2000;20(3):469–477. doi:10.1097/00004647-200003000-00005
  • Murata Y, Sakatani K, Katayama Y, Fukaya C. Increase in focal concentration of deoxyhaemoglobin during neuronal activity in cerebral ischaemic patients. J Neurol Neurosurg Psychiatry. 2002;73(2):182–184. doi:10.1136/jnnp.73.2.182
  • Schroeter ML, Bücheler MM, Müller K, et al. Towards a standard analysis for functional near-infrared imaging. NeuroImage. 2004;21(1):283–290.
  • Ye JC, Tak S, Jang KE, Jung J, Jang J. NIRS-SPM: statistical parametric mapping for near-infrared spectroscopy. Neuroimage. 2009;44(2):428–447. doi:10.1016/j.neuroimage.2008.08.036
  • Bauernfeind G, Böck C, Wriessnegger S, Müller-Putz G. Physiological noise removal from fNIRS signals. Biomed Tech (Berl). 2013. doi:10.1515/bmt-2013-4430
  • Tak S, Ye JC. Statistical analysis of fNIRS data: a comprehensive review. Neuroimage. 2014;85:72–91. doi:10.1016/j.neuroimage.2013.06.016
  • Arenth PM, Ricker JH, Schultheis MT. Applications of functional near-infrared spectroscopy (fNIRS) to neurorehabilitation of cognitive disabilities. Clin Neuropsychol. 2007;21(1):38–57. doi:10.1080/13854040600878785
  • Monden Y, Dan H, Nagashima M, et al. Clinically-oriented monitoring of acute effects of methylphenidate on cerebral hemodynamics in ADHD children using fNIRS. Clin Neurophysiol. 2012;123(6):1147–1157. doi:10.1016/j.clinph.2011.10.006
  • Nguyen DK, Tremblay J, Pouliot P, et al. Non-invasive continuous EEG-fNIRS recording of temporal lobe seizures. Epilepsy Res. 2012;99(1–2):112–126. doi:10.1016/j.eplepsyres.2011.10.035
  • Fukuda M. Near-infrared spectroscopy in psychiatry. Brain Nerve. 2012;64(2):175–183.
  • Gaab N, Gabrieli JD, Glover GH. Assessing the influence of scanner background noise on auditory processing. II. An fMRI study comparing auditory processing in the absence and presence of recorded scanner noise using a sparse design. Hum Brain Mapp. 2007;28(8):721–732. doi:10.1002/hbm.20299
  • Scarff CJ, Dort JC, Eggermont JJ, Goodyear BG. The effect of MR scanner noise on auditory cortex activity using fMRI. Hum Brain Mapp. 2004;22(4):341–349. doi:10.1002/hbm.20043
  • Blackman GA, Hall DA. Reducing the effects of background noise during auditory functional magnetic resonance imaging of speech processing: qualitative and quantitative comparisons between two image acquisition schemes and noise cancellation. J Speech Lang Hear Res. 2011. doi:10.1044/1092-4388(2010/10-0143)
  • Dewey RS, Hall DA, Plack CJ, Francis SJ Comparison of continuous sampling with active noise cancellation and sparse sampling for cortical and subcortical auditory fMRI [abstract]. Proceedings of the 2019 Annual Meeting of the International Society for Magnetic Resonance in Medicine (ISMRM); May 11–16; 2019; Montréal, QC, Canada
  • Edmister WB, Talavage TM, Ledden PJ, Weisskoff RM. Improved auditory cortex imaging using clustered volume acquisitions. Hum Brain Mapp. 1999;7(2):89–97.
  • Katsunuma A, Takamori H, Sakakura Y, Hamamura Y, Ogo Y, Katayama R. Quiet MRI with novel acoustic noise reduction. Magma. 2001;13(3):139–144. doi:10.1007/BF02678588
  • Mansfield P, Haywood B, Coxon R. Active acoustic control in gradient coils for MRI. Magn Reson Med. 2001;46(4):807–818. doi:10.1002/(ISSN)1522-2594
  • Plichta M, Herrmann M, Baehne C, et al. Event-related functional near-infrared spectroscopy (fNIRS): are the measurements reliable? Neuroimage. 2006;31(1):116–124. doi:10.1016/j.neuroimage.2005.12.008
  • Kim SG, Richter W, Uǧurbil K. Limitations of temporal resolution in functional MRI. Magn Reson. 1997;37(4):631–636. doi:10.1002/mrm.1910370427
  • Mushtaq F, Wiggins IM, Kitterick PT, Anderson CA, Hartley DE. Evaluating time-reversed speech and signal-correlated noise as auditory baselines for isolating speech-specific processing using fNIRS. PLoS One. 2019;14(7):e0219927. doi:10.1371/journal.pone.0219927
  • Anderson CA, Wiggins IM, Kitterick PT, Hartley DE. Adaptive benefit of cross-modal plasticity following cochlear implantation in deaf adults. Proc Natl Acad Sci. 2017;114(38):10256–10261. doi:10.1073/pnas.1704785114
  • Babiloni F, Cincotti F, Carducci F, Rossini PM, Babiloni C. Spatial enhancement of EEG data by surface Laplacian estimation: the use of magnetic resonance imaging-based head models. Clin Neurophysiol. 2001;112:724–727.
  • Cui X, Bray S, Bryant DM, Glover GH, Reiss AL. A quantitative comparison of NIRS and fMRI across multiple cognitive tasks. Neuroimage. 2011;54(4):2808–2821. doi:10.1016/j.neuroimage.2010.10.069
  • Yu X, Glen D, Wang S, et al. Direct imaging of macrovascular and microvascular contributions to BOLD fMRI in layers IV–V of the rat whisker–barrel cortex. Neuroimage. 2012;59(2):1451–1460. doi:10.1016/j.neuroimage.2011.08.001
  • Beauchamp MS, Beurlot MR, Fava E, et al. The developmental trajectory of brain-scalp distance from birth through childhood: implications for functional neuroimaging. PLoS One. 2011;6(9):e24981. doi:10.1371/journal.pone.0024981
  • Fukui Y, Ajichi Y, Okada E. Monte Carlo prediction of near-infrared light propagation in realistic adult and neonatal head models. Appl Opt. 2003;42(16):2881–2887. doi:10.1364/ao.42.002881
  • Lloyd-Fox S, Blasi A, Elwell C. Illuminating the developing brain: the past, present and future of functional near infrared spectroscopy. Neurosci Biobehav Rev. 2010;34(3):269–284. doi:10.1016/j.neubiorev.2009.07.008
  • Di Lorenzo R, Pirazzoli L, Blasi A, Bulgarelli C, Hakuno Y, Minagawa Y. Brigadoi S. Recommendations for motion correction of infant fNIRS data applicable to data sets acquired with a variety of experimental designs and acquisition systems. NeuroImage. 2019;200:511–527. doi:10.1016/j.neuroimage.2019.06.056
  • Brigadoi S, Ceccherini L, Cutini S, et al. Motion artifacts in functional near-infrared spectroscopy: a comparison of motion correction techniques applied to real cognitive data. NeuroImage. 2014;85:181–191. doi:10.1016/j.neuroimage.2013.04.082
  • Koh PH, Glaser D, Flandin G, et al. Functional optical signal analysis: a software tool for near-infrared spectroscopy data processing incorporating statistical parametric mapping. J Biomed Opt. 2007;12(6):064010. doi:10.1117/1.2804092
  • Toronov VY, Zhang X, Webb AG. A spatial and temporal comparison of hemodynamic signals measured using optical and functional magnetic resonance imaging during activation in the human primary visual cortex. Neuroimage. 2007;34(3):1136–1148. doi:10.1016/j.neuroimage.2006.08.048
  • Kohno S, Miyai I, Seiyama A, et al. Removal of the skin blood flow artifact in functional near-infrared spectroscopic imaging data through independent component analysis. J Biomed Opt. 2007;12(6):062111. doi:10.1117/1.2814249
  • Orihuela-Espina F, Leff DR, James DR, Darzi AW, Yang G-Z. Quality control and assurance in functional near infrared spectroscopy (fNIRS) experimentation. Phys Med Biol. 2010;55(13):3701. doi:10.1088/0031-9155/55/13/009
  • Yamada T, Umeyama S, Matsuda K. Separation of fNIRS signals into functional and systemic components based on differences in hemodynamic modalities. PLoS One. 2012;7(11):e50271. doi:10.1371/journal.pone.0050271
  • Ohnishi M, Kusakawa N, Masaki S, et al. Measurement of hemodynamics of auditory cortex using magnetoencephalography and near infrared spectroscopy. Acta Otolaryngol. 1997;117(sup532):129–131. doi:10.3109/00016489709126161
  • Chen LC, Sandmann P, Thorne JD, Herrmann CS, Debener S. Association of concurrent fNIRS and EEG signatures in response to auditory and visual stimuli. Brain Topogr. 2015;28(5):710–725. doi:10.1007/s10548-015-0424-8
  • Ray B, Roy TS, Wadhwa S, Roy KK. Development of the human fetal cochlear nerve: a morphometric study. Hear Res. 2005;202(1–2):74–86. doi:10.1016/j.heares.2004.09.013
  • Huotilainen M, Kujala A, Hotakainen M, et al. Auditory magnetic responses of healthy newborns. Neuroreport. 2003;14(14):1871–1875. doi:10.1097/00001756-200310060-00023
  • Strangman G, Goldstein R, Rauch SL, Stein J. Near-infrared spectroscopy and imaging for investigating stroke rehabilitation: test-retest reliability and review of the literature. Arch Phys Med Rehabil. 2006;87(12):12–19. doi:10.1016/j.apmr.2006.07.269
  • Blasi A, Lloyd-Fox S, Johnson MH, Elwell C. Test–retest reliability of functional near infrared spectroscopy in infants. Neurophotonics. 2014;1(2):025005. doi:10.1117/1.NPh.1.2.025005
  • Wiggins IM, Anderson CA, Kitterick PT, Hartley DE. Speech-evoked activation in adult temporal cortex measured using functional near-infrared spectroscopy (fNIRS): are the measurements reliable? Hear Res. 2016;339:142–154. doi:10.1016/j.heares.2016.07.007
  • Santosa H, Hong MJ, Hong K-S. Lateralization of music processing with noises in the auditory cortex: an fNIRS study. Front Behav Neurosci. 2014;8:418. doi:10.3389/fnbeh.2014.00418
  • Defenderfer J, Kerr-German A, Hedrick M, Buss AT. Investigating the role of temporal lobe activation in speech perception accuracy with normal hearing adults: an event-related fNIRS study. Neuropsychologia. 2017;106:31–41. doi:10.1016/j.neuropsychologia.2017.09.004
  • Sharda M, Singh N. Auditory perception of natural sound categories–an fMRI study. Neuroscience. 2012;214:49–58. doi:10.1016/j.neuroscience.2012.03.053
  • Zhang F, Wang J-P, Kim J, Parrish T, Wong PC. Decoding multiple sound categories in the human temporal cortex using high resolution fMRI. PLoS One. 2015;10(2):e0117303. doi:10.1371/journal.pone.0117303
  • Hong K-S, Santosa H. Decoding four different sound-categories in the auditory cortex using functional near-infrared spectroscopy. Hear Res. 2016;333:157–166. doi:10.1016/j.heares.2016.01.009
  • Pollonini L, Olds C, Abaya H, Bortfeld H, Beauchamp MS, Oghalai JS. Auditory cortex activation to natural speech and simulated cochlear implant speech measured with functional near-infrared spectroscopy. Hear Res. 2014;309:84–93. doi:10.1016/j.heares.2013.11.007
  • Lawrence RJ, Wiggins IM, Anderson CA, Davies-Thompson J, Hartley DE. Cortical correlates of speech intelligibility measured using functional near-infrared spectroscopy (fNIRS). Hear Res. 2018;370:53–64. doi:10.1016/j.heares.2018.09.005
  • Dewey RS, Hartley DE. Cortical cross-modal plasticity following deafness measured using functional near-infrared spectroscopy. Hear Res. 2015;325:55–63. doi:10.1016/j.heares.2015.03.007
  • Heimler B, Weisz N, Collignon O. Revisiting the adaptive and maladaptive effects of crossmodal plasticity. Neuroscience. 2014;283:44–63. doi:10.1016/j.neuroscience.2014.08.003
  • Stropahl M, Chen LC, Debener S. Cortical reorganization in postlingually deaf cochlear implant users: intra-modal and cross-modal considerations. Hear Res. 2017;343:128–137. doi:10.1016/j.heares.2016.07.005
  • Lee H-J, Giraud A-L, Kang E, et al. Cortical activity at rest predicts cochlear implantation outcome. Cereb Cortex. 2006;17(4):909–917. doi:10.1093/cercor/bhl001
  • Rouger J, Lagleyre S, Démonet JF, Fraysse B, Deguine O, Barone P. Evolution of crossmodal reorganization of the voice area in cochlear‐implanted deaf patients. Hum Brain Mapp. 2012;33(8):1929–1940. doi:10.1002/hbm.21331
  • Sandmann P, Dillier N, Eichele T, et al. Visual activation of auditory cortex reflects maladaptive plasticity in cochlear implant users. Brain. 2012;135(2):555–568. doi:10.1093/brain/awr329
  • Strelnikov K, Rouger J, Demonet J-F, et al. Visual activity predicts auditory recovery from deafness after adult cochlear implantation. Brain. 2013;136(12):3682–3695. doi:10.1093/brain/awt274
  • Sevy AB, Bortfeld H, Huppert TJ, Beauchamp MS, Tonini RE, Oghalai JS. Neuroimaging with near-infrared spectroscopy demonstrates speech-evoked activity in the auditory cortex of deaf children following cochlear implantation. Hear Res. 2010;270(1–2):39–47. doi:10.1016/j.heares.2010.09.010
  • Heinks‐Maldonado TH, Mathalon DH, Gray M, Ford JM. Fine‐tuning of auditory cortex during speech production. Psychophysiology. 2005;42(2):180–190. doi:10.1111/j.1469-8986.2005.00272.x
  • Hickok G. Computational neuroanatomy of speech production. Nat Rev Neurosci. 2012;13(2):135. doi:10.1038/nrn3158
  • Okada K, Matchin W, Hickok G. Neural evidence for predictive coding in auditory cortex during speech production. Psychon Bull Rev. 2018;25(1):423–430. doi:10.3758/s13423-017-1284-x
  • Stuart A, Kalinowski J, Rastatter MP, Lynch K. Effect of delayed auditory feedback on normal speakers at two speech rates. J Acoust Soc Am. 2002;111(5):2237–2241. doi:10.1121/1.1466868
  • Hull R, Bortfeld H, Koons S. Near-infrared spectroscopy and cortical responses to speech production. Open Neuroimag J. 2009;3:26. doi:10.2174/1874440000903010026
  • Cannestra AF, Wartenburger I, Obrig H, Villringer A, Toga AW. Functional assessment of Broca’s area using near infrared spectroscopy in humans. Neuroreport. 2003;14(15):1961–1965. doi:10.1097/00001756-200310270-00016
  • Moriai-Izawa A, Dan H, Dan I, et al. Multichannel fNIRS assessment of overt and covert confrontation naming. Brain Lang. 2012;121(3):185–193. doi:10.1016/j.bandl.2012.02.001
  • Chang S-E, Kenney MK, Loucks TM, Ludlow CL. Brain activation abnormalities during speech and non-speech in stuttering speakers. NeuroImage. 2009;46(1):201–212. doi:10.1016/j.neuroimage.2009.01.066
  • Walsh B, Tian F, Tourville J, Yücel M, Kuczek T, Bostian A. Hemodynamics of speech production: an fNIRS investigation of children who stutter. Sci Rep. 2017;7(1):4034. doi:10.1038/s41598-017-04357-6
  • Horovitz SG, Gore JC. Simultaneous event‐related potential and near‐infrared spectroscopic studies of semantic processing. Hum Brain Mapp. 2004;22(2):110–115. doi:10.1002/hbm.20018
  • Lau EF, Phillips C, Poeppel D. A cortical network for semantics:(de) constructing the N400. Nat Rev Neurosci. 2008;9(12):920. doi:10.1038/nrn2532
  • Telkemeyer S, Rossi S, Koch SP, et al. Sensitivity of newborn auditory cortex to the temporal structure of sounds. J Neurosci. 2009;29(47):14726–14733. doi:10.1523/JNEUROSCI.1246-09.2009
  • Kushnerenko E, Ceponiene R, Balan P, Fellman V, Huotilainen M, Näätänen R. Maturation of the auditory event-related potentials during the first year of life. Neuroreport. 2002;13(1):47–51. doi:10.1097/00001756-200201210-00014
  • Funane T, Atsumori H, Katura T, et al. Quantitative evaluation of deep and shallow tissue layers’ contribution to fNIRS signal using multi-distance optodes and independent component analysis. Neuroimage. 2014;85:150–165. doi:10.1016/j.neuroimage.2013.02.026
  • Funane T, Homae F, Watanabe H, Kiguchi M, Taga G. Greater contribution of cerebral than extracerebral hemodynamics to near-infrared spectroscopy signals for functional activation and resting-state connectivity in infants. Neurophotonics. 2014;1(2):025003. doi:10.1117/1.NPh.1.2.025003
  • Funane T, Sato H, Yahata N, et al. Concurrent fNIRS-fMRI measurement to validate a method for separating deep and shallow fNIRS signals by using multidistance optodes. Neurophotonics. 2015;2(1):015003. doi:10.1117/1.NPh.2.1.015003
  • Wallois F, Mahmoudzadeh M, Patil A, Grebe R. Usefulness of simultaneous EEG–NIRS recording in language studies. Brain Lang. 2012;121(2):110–123. doi:10.1016/j.bandl.2011.03.010
  • Piper SK, Krueger A, Koch SP, et al. A wearable multi-channel fNIRS system for brain imaging in freely moving subjects. Neuroimage. 2014;85:64–71.
  • Jerger J, Lovering L, Wertz M. Auditory disorder following bilateral temporal lobe insult: report of a case. J Speech Hear Disord. 1972;37(4):523–535.
  • Häusler R, Levine RA. Auditory dysfunction in stroke. Acta Otolaryngol. 2000;120(6):689–703.
  • Martin K, Trauner DA. Auditory neglect in children following perinatal stroke. Behav Brain Res. 2019;359:878–885.
  • Funane T, Kiguchi M, Atsumori H, Sato H, Kubota K, Koizumi H. Synchronous activity of two people’s prefrontal cortices during a cooperative task measured by simultaneous near-infrared spectroscopy. J Biomed Opt. 2011;16(7):077011.
  • Koike T, Tanabe HC, Sadato N. Hyperscanning neuroimaging technique to reveal the “two-in-one” system in social interactions. Neurosci Res. 2015;90:25–32.
  • Liu N, Mok C, Witt EE, Pradhan AH, Chen JE, Reiss AL. NIRS-based hyperscanning reveals inter-brain neural synchronization during cooperative Jenga game with face-to-face communication. Front Hum Neurosci. 2016;10:82.
  • Dai R, Liu R, Liu T, et al. Holistic cognitive and neural processes: a fNIRS-hyperscanning study on interpersonal sensorimotor synchronization. Soc Cogn Affect Neurosci. 2018;13(11):1141–1154.
  • Vanzella P, Balardin JB, Furucho RA, et al. fNIRS responses in professional violinists while playing duets: evidence for distinct leader and follower roles at the brain level. Front Psychol. 2019;10:164. doi:10.3389/fpsyg.2019.00164
  • Nozawa T, Sasaki Y, Sakaki K, Yokoyama R, Kawashima R. Interpersonal frontopolar neural synchronization in group communication: an exploration toward fNIRS hyperscanning of natural interactions. Neuroimage. 2016;133:484–497. doi:10.1016/j.neuroimage.2016.03.059