23
Views
4
CrossRef citations to date
0
Altmetric
Review

Advances in the diagnostic imaging of pheochromocytomas

, &
Pages 19-37 | Published online: 11 May 2011

References

  • Chrisoulidou A, Kaltsas G, Ilias I, Grossman AB. The diagnosis and management of malignant phaeochromocytoma and paraganglioma. Endocr Relat Cancer. 2007;14(3):569–585.
  • Wangberg B, Muth A, Khorram-Manesh A, et al. Malignant pheochro- mocytoma in a population-based study: survival and clinical results. Ann N YAcad Sci. 2006;1073:512–516.
  • Ahlman H. Malignant pheochromocytoma: state of the field with future projections. Ann N YAcad Sci. 2006;1073:449–464.
  • Forssell-Aronsson E, Bernhardt P, Wangberg B, Kolby L, Nilsson O, Ahlman H. Aspects on radionuclide therapy in malignant pheochromocytomas. Ann N Y Acad Sci. 2006;1073:498–504.
  • Timmers HJ, Chen CC, Carrasquillo JA, et al. Comparison of 18F-fluoro- L-DOPA, 18F-fluoro-deoxyglucose, and 18F-fluorodopamine PET and 123I-MIBG scintigraphy in the localization of pheochromocytoma and paraganglioma. J Clin Endocrinol Metab. 2009;94(12):4757–4767.
  • Francis IR, Korobkin M. Pheochromocytoma. Radiol Clin North Am. 1996;34(6):1101–1112.
  • Erickson JD, Schafer MK, Bonner TI, Eiden LE, Weihe E. Distinct pharmacological properties and distribution in neurons and endocrine cells of two isoforms of the human vesicular monoamine transporter. Proc Natl Acad Sci U S A. 1996;93(10):5166–5171.
  • Shulkin BL, Ilias I, Sisson JC, Pacak K. Current trends in functional imaging of pheochromocytomas and paragangliomas. Ann N Y Acad Sci. 2006;1073:374–382.
  • Kaltsas GA, Papadogias D, Grossman AB. The clinical presentation (symptoms and signs) of sporadic and familial chromaffin cell tumours (phaeochromocytomas and paragangliomas). FrontHorm Res. 2004;31:61–75.
  • Lenders JW, Pacak K, Walther MM, et al. Biochemical diagnosis of pheochromocytoma: which test is best? JAMA. 2002;287(11):1427–1434.
  • DeLellis R, Lloyd R, Heitz P. WHO Classification of Tumours - Pathology and Genetics of Tumours of Endocrine Organs. Lyon, France: IARC Press; 2004:147–150.
  • Sibal L, Jovanovic A, Agarwal SC, et al. Phaeochromocytomas presenting as acute crises after beta blockade therapy. Clin Endocrinol (Oxf). 2006;65(2):186–190.
  • Bravo EL, Tagle R. Pheochromocytoma: state-of-the-art and future prospects. Endocr Rev. 2003;24(4):539–553.
  • Karagiannis A, Mikhailidis DP, Athyros VG, Harsoulis F. Pheochromocytoma: an update on genetics and management. Endocr Relat Cancer. 2007;14(4):935–956.
  • Elder EE, Elder G, Larsson C. Pheochromocytoma and functional paraganglioma syndrome: no longer the 10% tumor. J Surg Oncol. 2005;89(3):193–201.
  • Mannelli M, Simi L, Gagliano MS, et al. Genetics and biology ofpheochro- mocytoma. Exp Clin Endocrinol Diabetes. 2007;115(3):160–165.
  • Young AL, Baysal BE, Deb A, Young WF Jr. Familial malignant catecholamine-secreting paraganglioma with prolonged survival associated with mutation in the succinate dehydrogenase B gene. J Clin Endocrinol Metab. 2002;87(9):4101–4105.
  • Baysal BE, Ferrell RE, Willett-Brozick JE, et al. Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma. Science. 2000;287(5454):848–851.
  • Kaelin W G Jr. SDH5 mutations and familial paraganglioma: somewhere Warburg is smiling. Cancer Cell. 2009;16(3):180–182.
  • Astuti D, Latif F, Dallol A, et al. Gene mutations in the succinate dehydrogenase subunit SDHB cause susceptibility to familial pheochromocytoma and to familial paraganglioma. Am J Hum Genet. 2001;69(1):49–54.
  • Yang Y, Valera VA, Padilla-Nash HM, et al. UOK 262 cell line, fumarate hydratase deficient (FH-/FH-) hereditary leiomyomatosis renal cell carcinoma: in vitro and in vivo model of an aberrant energy metabolic pathway in human cancer. Cancer Genet Cytogenet. 2010;196(1):45–55.
  • Hao HX, Khalimonchuk O, Schraders M, et al. SDH5, a gene required for flavination of succinate dehydrogenase, is mutated in paraganglioma. Science. 2009;325(5944):1139–1142.
  • Bayley JP, Devilee P. Warburg tumours and the mechanisms of mitochondrial tumour suppressor genes. Barking up the right tree? Curr Opin Genet Dev. 2010;20(3):324–329.
  • Amar L, Bertherat J, Baudin E, et al. Genetic testing in pheochromocytoma or functional paraganglioma. J Clin Oncol. 2005;23(34):8812–8818.
  • Brouwers FM, Eisenhofer G, Tao JJ, et al. High frequency of SDHB germline mutations in patients with malignant catecholamine-producing paragangliomas: implications for genetic testing. J Clin Endocrinol Metab. 2006;91(11):4505–4509.
  • Lack EE, Lloyd RV, Carney JA, Woodruff JW; Association of Directors of Anatomic and Surgical Pathology. Recommendations for the reporting of extra-adrenal paragangliomas. The Association of Directors of Anatomic and Surgical Pathology. Hum Pathol. 2003;34(2):112–113.
  • Ilias I, Sahdev A, Reznek RH, Grossman AB, Pacak K. The optimal imaging of adrenal tumours: a comparison of different methods. Endocr Relat Cancer. 2007;14(3):587–599.
  • Korobkin M, Francis IR, Kloos RT, Dunnick NR. The incidental adrenal mass. Radiol Clin North Am. 1996;34(5):1037–1054.
  • Wieland DM, Wu J, Brown LE, Mangner TJ, Swanson DP, Beierwaltes WH. Radiolabeled adrenergi neuron-blocking agents: adrenomedullary imaging with [131I]iodobenzylguanidine. J Nucl Med. 1980;21(4):349–353.
  • Kline RC, Swanson DP, Wieland DM, et al. Myocardial imaging in man with I-123 meta-iodobenzylguanidine. J Nucl Med. 1981;22(2):129–132.
  • Sisson JC, Frager MS, Valk TW, et al. Scintigraphic localization of pheochromocytoma. N Engl J Med. 1981;305(1):12–17.
  • Shapiro B, Gross MD, Shulkin B. Radioisotope diagnosis and therapy of malignant pheochromocytoma. Trends EndocrnolMetab. 2001;12(10):469–475.
  • Ilias I, Pacak K. Anatomical and functional imaging of metastatic pheochromocytoma. Ann NY Acad Sci. 2004;1018:495–504.
  • Sisson JC, Shulkin BL. Nuclear medicine imaging of pheochromocytoma and neuroblastoma. Q J Nucl Med. 1999;43(3):217–223.
  • Shapiro B, Gross MD. Radiochemistry, biochemistry, and kinetics of 131I-metaiodobenzylguanidine (MIBG) and 123I-MIBG: clinical implications of the use of 123I-MIBG. Med Pediatr Oncol. 1987;15(4):170–177.
  • Van Gils AP, Falke TH, van Erkel AR, et al. MR imaging and MIBG scintigraphy of pheochromocytomas and extraadrenal functioning paragangliomas. Radiographics. 1991;11(1):37–57.
  • Kolby L, Bernhardt P, Johanson V et al. Can quantification of VMAT and SSTR expression be helpful for planning radionuclide therapy of malignant pheochromocytomas? Ann N YAcad Sci. 2006;1073:491–497.
  • Alavi A, Basu S. Planar and SPECT imaging in the era of PET and PET-CT: can it survive the test of time? Eur J Nucl Med Mol Imaging. 2008;35(8):1554–1559.
  • Vaidyanathan G, Friedman HS, Keir ST, Zalutsky MR. Evaluation of meta-[211 At]astatobenzylguanidine in an athymic mouse human neuroblastoma xenograft model. Nucl Med Biol. 1996;23(6):851–856.
  • Vaidyanathan G, Affleck DJ, Alston KL, et al. A kit method for the high level synthesis of [211 At]MABG. Bioorg Med Chem. 2007;15(10):3430–3436.
  • Kurtaran A, Traub T, Shapiro B. Scintigraphic imaging of the adrenal glands. Eur J Radiol. 2002;41(2):123–130.
  • Campeau RJ, Garcia OM, Correa OA, Rege AB. Pheochromocytoma: diagnosis by scintigraphy using iodine 131 metaiodobenzylguanidine. South Med J. 1991;84(10):1221–1230.
  • Ackery DM, Tippett PA, Condon BR, Sutton HE, Wyeth P. New approach to the localisation of phaeochromocytoma: imaging with iodine-131-meta-iodobenzylguanidine. Br Med J (Clin Res Ed). 1984;288(6430):1587–1591.
  • Brink I, Hoegerle S, Klisch J, Bley TA. Imaging of pheochromocytoma and paraganglioma. Fam Cancer. 2005;4(1):61–68.
  • Troncone L, Rufini V, Danza FM, et al. Radioiodinated metaiodoben- zylguanidine (*I-MIBG) scintigraphy in neuroblastoma: a review of 160 studies. J Nucl Med Allied Sci. 1990;34(4):279–288.
  • Hattner RS, Pounds TR, Matthay KK. Normal cerebellar MIBG localization. Implications in the interpretation of delayed scans. Clin Nucl Med. 1994;19(11):985–988.
  • Dwamena BA, Zempel S, Klopper JF, van Heerden B, Wieland D, Shapiro B. Brain uptake of iodine-131 metaiodobenzylguanidine following therapy of malignant pheochromocytoma. Clin Nucl Med. 1998;23(7):441–445.
  • Elgazzar AH, Gelfand MJ, Washburn LC, et al. I-123 MIBG scintigraphy in adults. A report of clinical experience. Clin Nucl Med. 1995;20(2):147–152.
  • Lynn MD, Shapiro B, Sisson JC, et al. Portrayal of pheochromocytoma and normal human adrenal medulla by m-[123I]iodobenzylguanidine: concise communication. J Nucl Med. 1984;25(4):436–440.
  • Lynn MD, Shapiro B, Sisson JC, et al. Pheochromocytoma and the normal adrenal medulla: improved visualization with I-123 MIBG scintigraphy. Radiology. 1985;155(3):789–792.
  • Lindberg S, Fjalling M, Jacobsson L, Jansson S, Tisell LE. Methodology and dosimetry in adrenal medullary imaging with iodine-131 MIBG. J Nucl Med. 1988;29(10):1638–1643.
  • Roelants V Goulios C, Beckers C, Jamar F. Iodine-131-MIBG scintigraphy in adults: interpretation revisited? J Nucl Med. 1998;39(6):1007–1012.
  • Nakajo M, Shapiro B, Copp J, et al. The normal and abnormal distribution of the adrenomedullary imaging agent m-[I-131]iodobenzylguani- dine (I-131 MIBG) in man: evaluation by scintigraphy. J Nucl Med. 1983;24(8):672–682.
  • Mozley PD, Kim CK, Mohsin J, Jatlow A, Gosfield E 3rd, Alavi A. The efficacy of iodine-123 -MIBG as a screening test for pheochromocytoma. J Nucl Med. 1994;35(7):1138–1144.
  • Paltiel HJ, Gelfand MJ, Elgazzar AH, et al. Neural crest tumors: I-123 MIBG imaging in children. Radiology. 1994;190(1):117–121.
  • Bombardieri E, Aktolun C, Baum RP, et al. 131I/123I-metaiodo- benzylguanidine (MIBG) scintigraphy: procedure guidelines for tumour imaging. Eur J Nucl Med Mol Imaging. 2003;30(12):BP132-BP139.
  • Shapiro B, Copp JE, Sisson JC, Eyre PL, Wallis J, Beierwaltes WH. Iodine-131 metaiodobenzylguanidine for the locating of suspected pheochromocytoma: experience in 400 cases. J Nucl Med. 1985;26(6):576–585.
  • Witteles RM, Kaplan EL, Roizen MF. Sensitivity of diagnostic and localization tests for pheochromocytoma in clinical practice. Arch Intern Med. 2000;160(16):2521–2524.
  • Hoefnagel CA, Voute PA, de Kraker J, Marcuse HR. Radionuclide diagnosis and therapy of neural crest tumors using iodine-131 metaiodobenzylguanidine. J Nucl Med. 1987;28(3):308–314.
  • Francis IR, Glazer GM, Shapiro B, Sisson JC, Gross BH. Complementary roles of CT and 131I-MIBG scintigraphy in diagnosing pheochromocytoma. AJR Am J Roentgenol. 1983;141(4):719–725.
  • Montravers F, Coutris G, Sarda L, Mensch B, Talbot JN. Utility of thallium-201 and iodine-123 metaiodobenzylguanidine in the scintigraphic detection of neuroendocrine neoplasia. Eur J Nucl Med. 1993;20(11):1070–1077.
  • Bhatia KS, Ismail MM, Sahdev A, et al. 123I-metaiodobenzylguanidine (MIBG) scintigraphy for the detection of adrenal and extra-adrenal phaeochromocytomas: CT and MRI correlation. Clin Endocrinol (Oxf). 2008;69(2):181–188.
  • Koopmans KP, Jager PL, Kema IP, Kerstens MN, Albers F, Dullaart RP. 111In-octreotide is superior to 123I-metaiodobenzylguanidine for scintigraphic detection of head and neck paragangliomas. J Nucl Med. 2008;49(8):1232–1237.
  • Wiseman GA, Pacak K, O’Dorisio MS, et al. Usefulness of 123I-MIBG scintigraphy in the evaluation of patients with known or suspected primary or metastatic pheochromocytoma or paraganglioma: results from a prospective multicenter trial. J Nucl Med. 2009;50(9):1448–1454.
  • Franzius C, Hermann K, Weckesser M, et al. Whole-body PET/CT with 11C-meta-hydroxyephedrine in tumors of the sympathetic nervous system: feasibility study and comparison with 123I-MIBG SPECT/CT. J Nucl Med. 2006;47(10):1635–1642.
  • Rozovsky K, Koplewitz BZ, Krausz Y, et al. Added value of SPECT/CT for correlation of MIBG scintigraphy and diagnostic CT in neuroblastoma and pheochromocytoma. AJR Am J Roentgenol. 2008;190(4):1085–1090.
  • Ozer S, Dobrozemsky G, Kienast O, et al. Value of combined XCT/SPECT technology for avoiding false positive planar (123)I-MIBG scintigraphy. Nuklearmedizin. 2004;43(5):164–170.
  • Furuta N, Kiyota H, Yoshigoe F, Hasegawa N, Ohishi Y. Diagnosis of pheochromocytoma using [123I]-compared with [131I]-metaiodoben- zylguanidine scintigraphy. Int J Urol. 1999;6(3):119–124.
  • Lumachi F, Tregnaghi A, Zucchetta P, et al. Sensitivity and positive predictive value of CT, MRI and 123I-MIBG scintigraphy in localizing pheochromocytomas: a prospective study. Nucl Med Commun. 2006;27(7):583–587.
  • Cecchin D, Lumachi F, Marzola MC, et al. A meta-iodobenzyl- guanidine scintigraphic scoring system increases accuracy in the diagnostic management of pheochromocytoma. Endocr Relat Cancer. 2006;13(2):525–533.
  • Nielsen JT, Nielsen BV, Rehling M. Location of adrenal medullary pheochromocytoma by I-123 metaiodobenzylguanidine SPECT. Clin Nucl Med. 1996;21(9):695–699.
  • Shulkin BL, Shapiro B, Francis IR, Dorr R, Shen SW, Sisson JC. Primary extra-adrenal pheochromocytoma: positive I-123 MIBG imaging with negative I-131 MIBG imaging. Clin Nucl Med. 1986;11(12):851–854.
  • Nakatani T, Hayama T, Uchida J, Nakamura K, Takemoto Y, Sugimura K. Diagnostic localization of extra-adrenal pheochromocytoma: comparison of (123)I-MIBG imaging and (131)I-MIBG imaging. Oncol Rep. 2002;9(6):1225–1227.
  • Havekes B, Lai EW, Corssmit EP, Romijn JA, Timmers HJ, Pacak K. Detection and treatment of pheochromocytomas and paragangliomas: current standing of MIBG scintigraphy and future role of PET imaging. Q J Nucl Med Mol Imaging. 2008;52(4):419–429.
  • van der Harst E, de Herder WW, Bruining HA, et al. [(123)I] metaiodobenzylguanidine and [(111)In]octreotide uptake in beg- nign and malignant pheochromocytomas. J Clin Endocrinol Metab. 2001;86(2):685–693.
  • Nguyen HH, Proye CA, Carnaille B, Combemale F, Pattou FN, Huglo D. Tumour size: the only predictive factor for 131I MIBG uptake in phaeochromocytoma and paraganglioma. Aust N Z J Surg. 1999;69(5):350–353.
  • Maurea S, Cuocolo A, Reynolds JC, Neumann RD, Salvatore M. Diagnostic imaging in patients with paragangliomas. Computed tomography, magnetic resonance and MIBG scintigraphy comparison. Q J Nucl Med. 1996;40(4):365–371.
  • Lucon AM, Pereira MA, Mendonga BB, Halpern A, Wajchenbeg BL, Arap S. Pheochromocytoma: study of 50 cases. J Urol. 1997;157(4):1208–1212.
  • Takano A, Oriuchi N, Tsushima Y, et al. Detection of metastatic lesions from malignant pheochromocytoma and paraganglioma with diffusion- weighted magnetic resonance imaging: comparison with 18F-FDG positron emission tomography and 123I-MIBG scintigraphy. Ann Nucl Med. 2008;22(5):395–401.
  • Huang H-H, Wang P-W, Huang Y-E, Hsu Y-H, Wu Y-C, Lee C-H. Localization of pheochromocytoma: I-131 MIBG scintigraphy correlated with computed tomography. Ann Nucl Med Sci. 2001;14(2):67–74.
  • Rault E, Vandenberghe S, van Holen R, de Beenhouwer J, Staelens S, Lemahieu I. Comparison of image quality of different iodine isotopes (I-123, I-124, and I-131). Cancer Biother Radiopharm. 2007;22(3):423–430.
  • Yang Y-W, Chen J-C, Chang C-J, Cheng C-Y, Wang S-J. Evaluation of collimator choice and scatter correction on 123I SPECT images. Nucl Instrum Methods Phys Res. 2007;584(1):204–211.
  • Dobbeleir AA, Hambye AS, Franken PR. Influence of high- energy photons on the spectrum of iodine-123 with low- and medium-energy collimators: consequences for imaging with 123I- labelled compounds in clinical practice. Eur J Nucl Med. 1999;26(6):655–658.
  • Bravo EL. Pheochromocytoma: new concepts and future trends. Kidney Int. 1991;40(3):544–556.
  • Quint LE, Glazer GM, Francis IR, Shapiro B, Chenevert TL. Pheochromocytoma and paraganglioma: comparison of MR imaging with CT and I-131 MIBG scintigraphy. Radiology. 1987;165(1):89–93.
  • Jalil ND, Pattou FN, Combemale F, et al. Effectiveness and limits of preoperative imaging studies for the localisation of pheochromocytomas and paragangliomas: a review of 282 cases. French Association of Surgery (AFC), and The French Association of Endocrine Surgeons (AFCE). Eur J Surg. 1998;164(1):23–28.
  • Mannelli M, Ianni L, Cilotti A, Conti A. Pheochromocytoma in Italy: a multicentric retrospective study. Eur J Endocrinol. 1999;141(6):619–624.
  • Ilias I, Pacak K. Current approaches and recommended algorithm for the diagnostic localization of pheochromocytoma. J Clin Endocrinol Metab. 2004;89(2):479–491.
  • Baid SK, Lai EW, Wesley RA, et al. Brief communication: radiographic contrast infusion and catecholamine release in patients with pheochro- mocytoma. Ann Intern Med. 2009;150(1):27–32.
  • Disick GI, Palese MA. Extra-adrenal pheochromocytoma: diagnosis and management. Curr Urol Rep. 2007;8(1):83–88.
  • Velchik MG, Alavi A, Kressel HY, Engelman K. Localization of pheo- chromocytoma: MIBG [correction of MIGB], CT, and MRI correlation. J Nucl Med. 1989;30(3):328–336.
  • Troncone L, Rufini V, Montemaggi P, Danza FM, Lasorella A, Mastrangelo R. The diagnostic and therapeutic utility of radioiodinated metaiodobenzylguanidine (MIBG). 5 years of experience. Eur J Nucl Med. 1990;16(4–6):325–335.
  • Greenblatt DY, Shenker Y, Chen H. The utility of metaiodobenzylguani- dine (MIBG) scintigraphy in patients with pheochromocytoma. Ann Surg Oncol. 2008;15(3):900–905.
  • Maurea S, Cuocolo A, Reynolds JC, et al. Iodine-131-metaiodoben- zylguanidine scintigraphy in preoperative and postoperative evaluation of paragangliomas: comparison with CT and MRI. JNucí Med. 1993;34(2):173–179.
  • Miskulin J, Shulkin BL, Doherty GM, Sisson JC, Burney RE, Gauger PG. Is preoperative iodine 123 meta-iodobenzylguanidine scintigraphy routinely necessary before initial adrenalectomy for pheo- chromocytoma? Surgery. 2003;134(6):918–922; discussion 22–23.
  • Mihai R, Gleeson F, Roskell D, Parker A, Sadler G. Routine preoperative (123)I-MIBG scintigraphy for patients with phaeochromocytoma is not necessary. Langenbecks Arch Surg. 2008;393(5):725–727.
  • Gelfand MJ, Elgazzar AH, Kriss VM, Masters PR, Golsch GJ. Iodine- 123-MIBG SPECT versus planar imaging in children with neural crest tumors. J Nucí Med. 1994;35(11):1753–1757.
  • Kopf D, Bockisch A, Steinert H, et al. Octreotide scintigraphy and catecholamine response to an octreotide challenge in malignant phae- ochromocytoma. Cíin Endocrinol (Oxf). 1997;46(1):39–44.
  • Tenenbaum F, Lumbroso J, Schlumberger M, et al. Comparison of radiolabeled octreotide and meta-iodobenzylguanidine (MIBG) scintigraphy in malignant pheochromocytoma. J Nucí Med. 1995;36(1):1–6.
  • Kwekkeboom DJ, van Urk H, Pauw BK, et al. Octreotide scintigraphy for the detection of paragangliomas. J Nucí Med. 1993;34(6):873–878.
  • Kaltsas G, Korbonits M, Heintz E, et al. Comparison of somatostatin analog and meta-iodobenzylguanidine radionuclides in the diagnosis and localization of advanced neuroendocrine tumors. J Cíin Endocrinoí Metab. 2001;86(2):895–902.
  • Ilias I, Chen CC, Carrasquillo JA, et al. Comparison of 6–18F- fluorodopamine PET with 123I-metaiodobenzylguanidine and 111 in-pentetreotide scintigraphy in localization of nonmetastatic and metastatic pheochromocytoma. J Nucí Med. 2008;49(10):1613–1619.
  • Timmers HJ, Kozupa A, Chen CC, et al. Superiority of fluoro- deoxyglucose positron emission tomography to other functional imaging techniques in the evaluation of metastatic SDHB-associated pheochromocytoma and paraganglioma. J Cíin Oncoí. 2007;25(16):2262–2269.
  • Ott RJ, Tait D, Flower MA, Babich JW, Lambrecht RM. Treatment planning for 131I-mIBG radiotherapy of neural crest tumours using 124I-mIBG positron emission tomography. Br J Radiol. 1992;65(777):787–791.
  • Amartey JK, Al-Jammaz I, Lambrecht RM. An efficient batch preparation of high specific activity. Appl Radiai Isot. 2001;54(5):711–714.
  • Chen N, Zhang Q, Yu YA, et al. A novel recombinant vaccinia virus expressing the human norepinephrine transporter retains oncolytic potential and facilitates deep-tissue imaging. Mol Med. 2009;15(5–6):144–151.
  • Moroz MA, Serganova I, Zanzonico P, et al. Imaging hNET reporter gene expression with 124I-MIBG. J Nucí Med. 2007;48(5):827–836.
  • Valette H, Loc’h C, Mardon K, et al. Bromine-76-metabromobenzyl- guanidine: a PET radiotracer for mapping sympathetic nerves of the heart. J Nucí Med. 1993;34(10):1739–1744.
  • Loc’h C, Mardon K, Valette H, et al. Preparation and pharmacological characterization of [76Br]-meta-bromobenzylguanidine ([76Br] MBBG). Nucí Med Bioí. 1994;21(1):49–55.
  • Vaidyanathan G, Affleck DJ, Zalutsky MR. Validation of 4-[fluorine-18] fluoro-3-iodobenzylguanidine as a positron-emitting analog of MIBG. J Nucí Med. 1995;36(4):644–650.
  • Shulkin BL, Thompson NW, Shapiro B, Francis IR, Sisson JC. Pheochromocytomas: imaging with 2-[fluorine-18]fluoro-2-deoxy- D-glucose PET. Radioíogy. 1999;212(1):35–41.
  • Ilias I, Yu J, Carrasquillo JA, et al. Superiority of 6-[18F]-fluorodopamine positron emission tomography versus [131I]-metaiodobenzylguanidine scintigraphy in the localization of metastatic pheochromocytoma. J Cíin Endocrinoí Metab. 2003;88(9):4083–4087.
  • Shulkin BL, Koeppe RA, Francis IR, Deeb GM, Lloyd RV, Thompson NW. Pheochromocytomas that do not accumulate metaiodo- benzylguanidine: localization with PET and administration of FDG. Radiology. 1993;186(3):711–715.
  • Han SJ, Kim TS, Jeon SW, et al. Analysis of adrenal masses by 18F-FDG positron emission tomography scanning. Int J Clin Pract. 2007;61(5):802–809.
  • Pacak K, Eisenhofer G, Carrasquillo JA, Chen CC, Li ST, Goldstein DS. 6-[18F]fluorodopamine positron emission tomographic (PET) scanning for diagnostic localization of pheochromocytoma. Hypertension. 2001;38(1):6–8.
  • Timmers HJ, Carrasquillo JA, Whatley M, et al. Usefulness of standardized uptake values for distinguishing adrenal glands with pheochromo- cytoma from normal adrenal glands by use of 6–18F-fluorodopamine PET. J Nucl Med. 2007;48(12):1940–1944.
  • Mamede M, Carrasquillo JA, Chen CC, et al. Discordant localization of 2-[18F]-fluoro-2-deoxy-D-glucose in 6-[18F]-fluorodopamine- and [(123)I]-metaiodobenzylguanidine-negative metastatic pheochromo- cytoma sites. Nucl Med Commun. 2006;27(1):31–36.
  • Hoegerle S, Nitzsche E, Altehoefer C, et al. Pheochromocytomas: detection with 18F DOPA whole body PET - initial results. Radiology. 2002;222(2):507–512.
  • Timmers HJ, Hadi M, Carrasquillo JA, et al. The effects of carbidopa on uptake of 6–18F-Fluoro-L-DOPA in PET of pheochromocytoma and extraadrenal abdominal paraganglioma. J Nucí Med. 2007;48(10):1599–1606.
  • Shulkin BL, Wieland DM, Schwaiger M, et al. PET scanning with hydroxyephedrine: an approach to the localization of pheochromo- cytoma. J Nucl Med. 1992;33(6):1125–1131.
  • Trampal C, Engler H, Juhlin C, Bergstrom M, Langstrom B. Pheochromocytomas: detection with 11C hydroxyephedrine PET. Radiology. 2004;230(2):423–428.
  • Mann GN, Link JM, Pham P, et al. [11C]metahydroxyephedrine and [18F]fluorodeoxyglucose positron emission tomography improve clinical decision making in suspected pheochromocytoma. Ann Surg Oncol. 2006;13(2):187–197.
  • Shulkin BL, Wieland DM, Shapiro B, Sisson JC. PET epinephrine studies of pheochromocytoma. J Nucl Med. 1995;36:229P.
  • De Herder WW, Kwekkeboom DJ, Valkema R, et al. Neuroendocrine tumors and somatostatin: imaging techniques. J Endocrinol Invest. 2005;28 Suppl International 11:132–136.
  • Behr TM, Behe M, Becker W. Diagnostic applications of radiolabeled peptides in nuclear endocrinology. Q J Nucl Med. 1999;43(3):268–280.
  • Van Essen M, Krenning EP, de Jong M, Valkema R, Kwekkeboom DJ. Peptide Receptor Radionuclide Therapy with radiolabelled somatostatin analogues in patients with somatostatin receptor positive tumours. Acta Oncol. 2007;46(6):723–734.
  • Kaji P, Carrasquillo JA, Linehan WM, et al. The role of 6-[18F] fluorodopamine positron emission tomography in the localization of adrenal pheochromocytoma associated with von Hippel-Lindau syndrome. Eur J Endocrinol. 2007;156(4):483–487.
  • Warburg O. On respiratory impairment in cancer cells. Science. 1956;124(3215):269–270.
  • MIRD. Nuclear decay data in the MIRD format. Jan 21, 2011. Available from: http://www.nndc.bnl.gov/mird/. Accessed January 26, 201l.
  • Brown ML, Sheps SG, Sizemore G, et al. MIBG in the evaluation of suspected pheochromocytoma: Mayo Clinic experience. J Nucl Med. 1984;25:5.
  • Swensen SJ, Brown ML, Sheps SG, et al. Use of 131I-MIBG scintigraphy in the evaluation of suspected pheochromocytoma. Mayo Clin Proc. 1985;60(5):299–304.
  • Bravo EL, Saha G. Preoperative localization of pheochromocytoma: a prospective comparison of I-131-metaiodobenzylguanidine and abdominal computed tomography [abstract]. In: Prog Fourth Eur Mtg Hypertens; 1989; Milan, Italy.
  • Clesham CJ, Kennedy A, Lavender JP, Dollery CT, Wilkins MR. Meta-iodobenzylguanidine (MIBG) scanning in the diagnosis of phaeochromocytoma. J Hum Hypertens. 1993;7(4):353–356.
  • van der Horst-Schrivers AN, Jager PL, Boezen HM, Schouten JP, Kema IP, Links TP. Iodine-123 metaiodobenzylguanidine scintigraphy in localising phaeochromocytomas - experience and meta-analysis. Anticancer Res. 2006;26(2B):1599–1604.
  • ICRP5 3. Annals of the ICRP Publication 53. Radiation Dose to Patients from Radiopharmaceuticaís. Vol 18. Oxford, UK: Pergamon Press; 1987:331.
  • ICRP80. Radiation Dose to Patients from Radiopharmaceuticaís: Addendum 2 to ICRP Publication 53. Vol 28. Oxford, UK: Pergamon Press; 1998.
  • ICRP 53 Addendum 4. Radiation Dose to Patients from Radiopharmaceuticals: Addendum 4 to ICRP Publication 53. Oxford, UK: Pergamon Press; 2001.
  • ICRP 87. Managing Patient Dose in Computed Tomography. Vol 30. Oxford, UK: Pergamon Press; 2000.
  • Goldstein RE, O’Neill JA Jr, Holcomb GW 3rd, et al. Clinical experience over 48 years with pheochromocytoma. Ann Surg. 1999;229(6): 755–764; discussion 64–66.
  • Berglund AS, Hulthén UL, Manhem P, Thorsson O, Wollmer P, Törnquist C. Metaiodobenzylguanidine (MIBG) scintigraphy and computed tomography (CT) in clinical practice. Primary and secondary evaluation for localization of phaeochromocytomas. J Intern Med. 2001;249(3):247–251.