45
Views
0
CrossRef citations to date
0
Altmetric
Review

Technetium-99m tetrofosmin: Use for myocardial perfusion imaging in the detection of coronary artery disease

Pages 1-10 | Published online: 13 Aug 2010

References

  • Kelly JD, Forster AM, Higley B, et al. Technetium-99m-tetrofosmin as a new radiopharmaceutical for myocardial perfusion imaging. J Nucl Med. 1993;34(2):222–227.
  • Adachi I, Sugioka Y, Tanaka Y, et al. [Clinical efficacy of 99mTc-tetrofosmin myocardial scintigraphy - comparison to 201T1 myocardial scintigraphy]. Kaku Igaku. 1993;30(4):351–362. Japanese.
  • Inoue Y, Machida K, Honda N, et al. [Clearance of 99mTc-Tetrofosmin from the myocardium and the adjacent organs]. Kaku Igaku. 1993;30(3):313–316.
  • Inoue Y, Machida K, Honda N, et al. [Comparison between 180 degrees and 360 degrees data collection in 99mTc-Tetrofosmin SPECT of the myocardium]. Kaku Igaku. 1993;30(1):85–88. Japanese.
  • Matsuo H, Watanabe S, Nishida Y, et al. Assessment of area at risk and efficacy of treatment in patients with acute coronary syndrome using 99mTc tetrofosmin imaging in humans. Ann Nucl Med. 1993;7(4):231–238.
  • Nakajima K, Taki J, Shuke N, Bunko H, Takata S, Hisada K. Myocardial perfusion imaging and dynamic analysis with technetium-99m tetrofosmin. J Nucl Med. 1993;34(9):1478–1484.
  • Sridhara BS, Braat S, Rigo P, Itti R, Cload P, Lahiri A. Comparison of myocardial perfusion imaging with technetium-99m tetrofosmin versus thallium- 201 in coronary artery disease. Am J Cardiol. 1993;72(14):1015–1019.
  • Higley B, Smith FW, Smith T, et al. Technetium-99m-1,2-bis[bis(2- ethoxyethyl) phosphino]ethane: human biodistribution, dosimetry and safety of a new myocardial perfusion imaging agent. J Nucl Med. 1993;34(1):30–38.
  • Platts EA, North TL, Pickett RD, Kelly JD. Mechanism of uptake of technetium-tetrofosmin. I: Uptake into isolated adult rat ventricular myocytes and subcellular localization. J Nucl Cardiol. 1995;2(4):317–326.
  • Schaefer WM, Nowak B, Kaiser HJ, et al. Comparison of microsphere- equivalent blood flow (15O-water PET) and relative perfusion (99mTc- tetrofosmin SPECT) in myocardium showing metabolism-perfusion mismatch. J Nucl Med. 2003;44(1):33–39.
  • Kobayashi H, Kawaguchi M, Oka T, et al. [Identification of viable myocardium using 99mTc-tetrofosmin scintigraphy - comparison with 201Tl redistribution-reinjection images]. Kaku Igaku. 1995;32(4):367–375. Japanese.
  • Sugihara H, Nakagawa T, Yamashita E, et al. Reverse redistribution of Tc-99m-tetrofosmin in patients with acute myocardial infarction. Ann Nucl Med. 1999;13(1):43–47.
  • Hirata Y, Takamiya M, Kinoshita N, et al. Interpretation of reverse redistribution of 99mTc-tetrofosmin in patients with acute myocardial infarction. Eur J Nucl Med Mol Imaging. 2002;29(12):1594–1599.
  • Sugihara H, Kinoshita N, Adachi Y, et al. Early and delayed Tc-99m- tetrofosmin myocardial SPECT in patients with left bundle branch block. Ann Nucl Med. 1998;12(5):281–286.
  • Sugihara H, Taniguchi Y, Kinoshita N, et al. Reverse redistribution of Tc-99m-tetrofosmin in exercise myocardial SPECT in patients with hypertrophic cardiomyopathy. Ann Nucl Med. 1998;12(5):287–292.
  • Matsunari I, Tanishima Y, Taki J, et al. Early and delayed technetium- 99m-tetrofosmin myocardial SPECT compared in normal volunteers. J Nucl Med. 1996;37(10):1622–1626.
  • Sridhara B, Sochor H, Rigo P, et al. Myocardial single-photon emission computed tomographic imaging with technetium 99m tetrofosmin: stress-rest imaging with same-day and separate-day rest imaging. J Nucl Cardiol. 1994;1(2 Pt 1):138–143.
  • Takahashi N, Reinhardt CP, Marcel R, Leppo JA. Myocardial uptake of 99mTc-tetrofosmin, sestamibi, and 201Tl in a model of acute coronary reperfusion. Circulation. 1996;94(10):2605–2613.
  • Zaret BL, Rigo P, Wackers FJ, et al. Myocardial perfusion imaging with 99mTc tetrofosmin. Comparison to 201Tl imaging and coronary angiography in a phase III multicenter trial. Tetrofosmin International Trial Study Group. Circulation. 1995;91(2):313–319.
  • Nuyts J, Dupont P, Van den Maegdenbergh V, Vleugels S, Suetens P, Mortelmans L. A study of the liver-heart artifact in emission tomography. J Nucl Med. 1995;36(1):133–139.
  • Derebek E, Kozan O, Durak H, et al. Infusion versus bolus injection of Tc-99m tetrofosmin in the identification of viable myocardium. Clin Nucl Med. 1998;23(3):146–149.
  • Braat SH, Leclercq B, Itti R, Lahiri A, Sridhara B, Rigo P. Myocardial imaging with technetium-99m-tetrofosmin: comparison of one-day and two-day protocols. J Nucl Med. 1994;35(10):1581–1585.
  • Ohtsuki K, Sugihara H, Taniguchi Y, et al. [Evaluation of myocardial perfusion and ventricular shape in hypertrophic cardiomyopathy using 99mTc-tetrofosmin scintigraphy: comparison with 201Tl myocardial scintigraphy]. Kaku Igaku. 1994;31(4):309–318. Japanese.
  • Sinusas AJ, Shi Q, Saltzberg MT, et al. Technetium-99m-tetro- fosmin to assess myocardial blood flow: experimental validation in an intact canine model of ischemia. J Nucl Med. 1994;35(4):664–671.
  • Matsunari I, Fujino S, Taki J, et al. Myocardial viability assessment with technetium-99m-tetrofosmin and thallium-201 reinjection in coronary artery disease. J Nucl Med. 1995;36(11):1961–1967.
  • Matsunari I, Fujino S, Taki J, et al. Comparison of defect size between thallium-201 and technetium-99m tetrofosmin myocardial single-photon emission computed tomography in patients with single-vessel coronary artery disease. Am J Cardiol. 1996;77(5):350–354.
  • Maes AF, Borgers M, Flameng W, et al. Assessment of myocardial viability in chronic coronary artery disease using technetium-99m sestamibi SPECT. Correlation with histologic and positron emission tomographic studies and functional follow-up. J Am Coll Cardiol. 1997;29(1):62–68.
  • Villanueva-Meyer J, Mena I, Narahara KA. Simultaneous assessment of left ventricular wall motion and myocardial perfusion with technetium- 99m-methoxy isobutyl isonitrile at stress and rest in patients with angina: comparison with thallium-201 SPECT. JNucl Med. 1990;31(4):457–463.
  • Gremillet E, Champailler A. Comparative myocardial uptake of technetium-99m sestamibi and technetium-99m tetrofosmin one hour after stress injection. Eur J Nucl Med. 1998;25(11):1502–1510.
  • Matsunari I, Haas F, Nguyen NT, et al. Comparison of sestamibi, tetrofosmin, and Q12 retention in porcine myocardium. J Nucl Med. 2001;42(5):818–823.
  • Kapur A, Latus KA, Davies G, et al. A comparison of three radionuclide myocardial perfusion tracers in clinical practice: the ROBUST study. Eur J Nucl Med Mol Imaging. 2002;29(12):1608–1616.
  • Fukushima K, Momose M, Kondo C, Kusakabe K, Kasanuki H. Myocardial kinetics of (201)Thallium, (99m)Tc-tetrofosmin, and (99m) Tc-sestamibi in an acute ischemia-reperfusion model using isolated rat heart. Ann Nucl Med. 2007;21(5):267–273.
  • Okada DR, Liu Z, Beju D, Okada RD, Johnson G, 3rd. Monocationic radiotracer kinetics and myocardial infarct size: a perfused rat heart study. Ann Nucl Med. 200;22(7):617–627.
  • Nakagawa S, Kimura M, Kurimura K, Igarashi A, Ooba Y. [Optimal protocol for 99mTc-tetrofosmin myocardial SPECT imaging with exercise or dipyridamole stress test and the characteristics of bullseye normal file]. Kaku Igaku. 1996;33(10):1073–1082. Japanese.
  • Pillay M, Cox PH, Schonfeld DH, Mathews S. Tc-99m tetrofosmin myocardial distribution 4 hours post injection. Int J Card Imaging. 1996;12(2):127–135.
  • Thorley PJ, Bloomer TN, Sheard KL, Sivananthan UM. The use of GTN to improve the detection of ischaemic myocardium using 99Tcm- tetrofosmin. Nucl Med Commun. 1996;17(8):669–674.
  • He W, Acampa W, Mainolfi C, et al. Tc-99m tetrofosmin tomography after nitrate administration in patients with ischemic left ventricular dysfunction: relation to metabolic imaging by PET. J Nucl Cardiol. 2003;10(6):599–606.
  • Flotats A, Carrio I, Estorch M, et al. Nitrate administration to enhance the detection of myocardial viability by technetium-99m tetrofosmin single-photon emission tomography. Eur J Nucl Med. 1997;24(7):767–773.
  • Her SH, Yoon HJ, Lee JM, et al. Adenosine Tc-99m tetrofosmin SPECT in differentiation of ischemic from nonischemic cardiomyopathy in patients with LV systolic dysfunction. Clin Nucl Med. 2008;33(7):459–463.
  • Irwin RB, Arumugam P, Khattar RS. Incidental detection of apical hypertrophic cardiomyopathy by myocardial perfusion imaging. Nucl Med Commun. 2010;31(4):286–293.
  • Adachi I, Hou N, Komori T, et al. [Usefulness of 99mTc-tetrofosmin myocardial scintigraphy before and after coronary intervention]. Kaku Igaku. 1997;34(6):363–369. Japanese.
  • Cinca J, Garcia-Burillo A, Carreno A, Castell J, Warren M, Candell- Riera J, et al. Differential uptake of myocardial perfusion radiotracers in normal, infarcted, and acutely ischemic peri-infarction myocardium. Cardiovasc Res. 1998;38(1):91–977.
  • Ueda T, Toyama T, Seki R, et al. Prediction of functional outcome in stunned myocardium after myocardial infarction using BMIPP and tetrofosmin imaging. JInt Med Res. 2009;37(2):367–377.
  • Glover DK, Ruiz M, Koplan BA, Watson DD, Beller GA. 99mTc-tetrofosmin assessment of myocardial perfusion and viability in canine models of coronary occlusion and reperfusion. J Nucl Med. 1999;40(1):142–149.
  • Kuwabara Y, Watanabe S, Nakaya J, et al. Functional evaluation of myocardial viability by 99mTc tetrofosmin gated SPECT - a quantitative comparison with 18F fluorodeoxyglucose positron emission CT (18F FDG PET). Ann Nucl Med. 1999;13(3):135–140.
  • Bavelaar-Croon CD, Pauwels EK, van der Wall EE. Gated single-photon emission computed tomographic myocardial imaging: a new tool in clinical cardiology. Am Heart J. 2001;141(3):383–390.
  • Stollfuss JC, Haas F, Matsunari I, et al. 99mTc-tetrofosmin SPECT for prediction of functional recovery defined by MRI in patients with severe left ventricular dysfunction: additional value of gated SPECT. J Nucl Med. 1999;40(11):1824–1831.
  • Maruyama A, Hasegawa S, Paul AK, et al. Myocardial viability assessment with gated SPECT Tc-99m tetrofosmin % wall thickening: comparison with F-18 FDG-PET. Ann Nucl Med. 2002;16(1):25–32.
  • Gunning MG, Anagnostopoulos C, Davies G, et al. Simultaneous assessment of myocardial viability and function for the detection of hibernating myocardium using ECG-gated 99Tcm-tetrofosmin emission tomography: a comparison with 201Tl emission tomography combined with cine magnetic resonance imaging. Nucl Med Commun. 1999;20(3):209–214.
  • Zhao C, Shuke N, Okizaki A, et al. Comparison of myocardial fatty acid metabolism with left ventricular function and perfusion in cardiomyopathies: by 123I-BMIPP SPECT and 99mTc-tetrofosmin electrocardiographically gated SPECT. Ann Nucl Med. 2003;17(7):541–548.
  • Everaert H, Vanhove C, Franken PR. Assessment of perfusion, function, and myocardial metabolism after infarction with a combination of low- dose dobutamine tetrofosmin gated SPECT perfusion scintigraphy and BMIPP SPECT imaging. J Nucl Cardiol. 2000;7(1):29–36.
  • Nanasato M, Ando A, Isobe S, et al. Evaluation of left ventricular function using electrocardiographically gated myocardial SPECT with (123) I-labeled fatty acid analog. J Nucl Med. 2001;42(12):1747–1756.
  • Wahba FF, Bavelaar-Croon CD, Baur LH, et al. Detection of residual wall motion after sustained myocardial infarction by gated 99Tcm- tetrofosmin SPECT: a comparison with echocardiography. Nucl Med Commun. 2001;22(2):175–182.
  • Everaert H, Vanhove C, Franken PR. Effect of beta-blockade on low-dose dobutamine-induced changes in left ventricular function in healthy volunteers: assessment by gated SPET myocardial perfusion scintigraphy. Eur J Nucl Med. 2000;27(4):419–424.
  • Mabuchi M, Kubo N, Morita K, et al. Prediction of functional recovery after coronary bypass surgery using quantitative gated myocardial perfusion SPECT. Nucl Med Commun. 2003;24(6):625–631.
  • Kasama S, Toyama T, Kumakura H, et al. Low-dose dobutamine stress 99mTc tetrofosmin quantitative gated SPECT performed during the acute phase of myocardial infarction predicts subsequent myocardial viability and detects stunned myocardium. Nucl Med Commun. 2003;24(2):167–174.
  • Sozzi FB, Poldermans D, Bax JJ, et al. Improved identification of viable myocardium using second harmonic imaging during dobutamine stress echocardiography. Heart. 2001;86(6):672–678.
  • Rambaldi R, Poldermans D, Bax JJ, et al. Dobutamine stress echocardiography and technetium-99m-tetrofosmin/fluorine 18-- fluorodeoxyglucose single-photon emission computed tomography and influence of resting ejection fraction to assess myocardial viability in patients with severe left ventricular dysfunction and healed myocardial infarction. Am J Cardiol. 1999;84(2):130–134.
  • Fukuchi K, Katafuchi T, Fukushima K, et al. Estimation of myocardial perfusion and viability using simultaneous 99mTc-tetrofosmin - FDG collimated SPECT. J Nucl Med. 2000;41(8):1318–1323.
  • Kam BL, Valkema R, Poldermans D, et al. Feasibility and image quality of dual-isotope SPECT using 18F-FDG and (99m)Tc- tetrofosmin after acipimox administration. J Nucl Med. 2003;44(2):140–145.
  • Feola M, Biggi A, Francini A, et al. Placebo or trimetazidine (99m)Tc tetrofosmin myocardial SPECT and low-dose dobutamine echocardiography in hibernating myocardium. Arch Med Res. 2006;37(1):117–122.
  • Fang LG, Chen LB, Li F, Zhu WL, Fang Q. [Comparison of low-dose dobutamine echocardiography and dual-isotope emission simultaneous myocardial perfusion acquisition for myocardial viability assessment]. Zhonghua Xin Xue Guan Bing Za Zhi. 2007;35(4):325–328. Chinese.
  • Carlsson M, Ubachs JF, Hedstrom E, Heiberg E, Jovinge S, Arheden H. Myocardium at risk after acute infarction in humans on cardiac magnetic resonance: quantitative assessment during follow-up and validation with single-photon emission computed tomography. JACC Cardiovasc Imaging. 2009;2(5):569–576.
  • Roes SD, Kaandorp TA, Marsan NA, et al. Agreement and disagreement between contrast-enhanced magnetic resonance imaging and nuclear imaging for assessment of myocardial viability. Eur J Nucl Med Mol Imaging. 2009;36(4):594–601.
  • Yoshida S, Nakamura S, Sugiura T, et al. Factors associated with myocardial salvage immediately after emergent percutaneous coronary intervention in patients with ST-elevation acute myocardial infarction. Ann Nucl Med. 2009;23(4):383–390.