16
Views
0
CrossRef citations to date
0
Altmetric
Original Research

Hsp70 and Hsp90 are differentially expressed in crayfish muscle and neurons after heat stress

, , &
Pages 41-50 | Published online: 02 Dec 2013

References

  • Espina S, Diazherrera F, Buckler L. Preferred and avoided temperatures in the crayfish Procambarus clarkii (Decapoda, Cambaridae). J Therm Biol. 1993;18(1):35–39.
  • Fanjul-Moles ML, Bosques-Tistler T, Prieto-Sagredo J, Castanon- Cervantes O, Fernandez-Rivera-Rio L. Effect of variation in photoperiod and light intensity on oxygen consumption, lactate concentration and behavior in crayfish Procambarus clarkii and Procambarus digueti. Comp Biochem Physiol A Mol Integr Physiol. 1998;119(1):263–269.
  • Powell ML, Watts SA. Effect of temperature acclimation on metabolism and hemocyanin binding affinities in two crayfish, Procambarus clarkii and Procambarus zonangulus. Comp Biochem Physiol A Mol Integr Physiol. 2006;144(2):211–217.
  • Gherardi F, Holdich DM. Crustacean Issues 11. Crayfish in Europe as Alien Species. Rotterdam, The Netherlands: AA Balkema; 1999.
  • Khalil MT, Sleem SH. Can the crayfish eradicate schistosomiasis in Egypt and Africa? J Am Sci. 2011;7(7):457–462.
  • Mkoji GM, Hofkin BV, Kuris AM, et al. Impact of the crayfish Pro- cambarus clarkii on Schistosoma haematobium transmission in Kenya. Am JTrop MedHyg. 1999;61(5):751–759.
  • Hofkin BV Mkoji GM, Koech DK, Loker ES. Control of schistosome- transmitting snails in Kenya by the North American crayfish Procam- barus clarkii. Am J Trop Med Hyg. 1991;45(3):339–344.
  • Steinmann P, Keiser J, Bos R, Tanner M, Utzinger J. Schistosomiasis and water resources development: systematic review, meta-analysis, and estimates of people at risk. Lancet Infect Dis. 2006;6(7):411–425.
  • Lindquist S, Craig EA. The heat-shock proteins. Annu Rev Genet. 1988;22:631–677.
  • Welch WJ, Feramisco JR. Purification of the major mammalian heat shock proteins. J Biol Chem. 1982;257(24):14949–14959.
  • Jolly C, Morimoto RI. Role of the heat shock response and molecular chaperones in oncogenesis and cell death. J Natl Cancer Inst. 2000;92(19):1564–1572.
  • Gething MJ, Sambrook J. Protein folding in the cell. Nature. 1992;355(6355):33–45.
  • Hartl FU, Martin J, Neupert W. Protein folding in the cell: the role of molecular chaperones Hsp70 and Hsp60. Annu Rev Biophys Biomol Struct. 1992;21:293–322.
  • Peterson NS, Moller G, Mitchell HK. Genetic mapping of the coding regions for three heat-shock proteins in Drosophila melanogaster. Genetics. 1979;92(3):891–902.
  • Borges JC, Ramos CH. Protein folding assisted by chaperones. Protein PeptLett. 2005;12(3):257–261.
  • Walter S, Buchner J. Molecular chaperones - cellular machines for protein folding. Angew Chem Int Ed Engl. 2002;41(7):1098–1113.
  • Luders J, Demand J, Hohfeld J. The ubiquitin-related BAG-1 provides a link between the molecular chaperones Hsc70/Hsp70 and the proteasome. J Biol Chem. 2000;275(7):4613–4617.
  • Mayer MP, Bukau B. Hsp70 chaperones: cellular functions and molecular mechanism. Cell Mol Life Sci. 2005;62(6):670–684.
  • Wegele H, Muller L, Buchner J. Hsp70 and Hsp90 — a relay team for protein folding. Rev Physiol Biochem Pharmacol. 2004;151:1–44.
  • Csermely P, Schnaider T, Soti C, Prohaszka Z, Nardai G. The 90-kDa molecular chaperone family: structure, function, and clinical applications. A comprehensive review. Pharmacol Ther. 1998;79(2):129–168.
  • Kimmins S, MacRae TH. Maturation of steroid receptors: an example of functional cooperation among molecular chaperones and their associated proteins. Cell Stress Chaperones. 2000;5(2):76–86.
  • Pratt WB. The role of the hsp90-based chaperone system in signal transduction by nuclear receptors and receptors signaling via MAP kinase. Annu Rev Pharmacol Toxicol. 1997;37:297–326.
  • Pratt WB, Toft DO. Steroid receptor interactions with heat shock protein and immunophilin chaperones. Endocr Rev. 1997;18(3):306–360.
  • Buchner J. Hsp90 and Co — a holding for folding. Trends Biochem Sci. 1999;24(4):136–141.
  • Picard D. Heat-shock protein 90, a chaperone for folding and regulation. Cell Mol Life Sci. 2002;59(10):1640–1648.
  • Calderwood SK, Khaleque MA, Sawyer DB, Ciocca DR. Heat shock proteins in cancer: chaperones of tumorigenesis. Trends Biochem Sci. 2006;31(3):164–172.
  • Keppler BR, Grady AT, Jarstfer MB. The biochemical role of the heat shock protein 90 chaperone complex in establishing human telomerase activity. J Biol Chem. 2006;281(29):19840–19848.
  • Rutherford SL, Zuker CS. Protein folding and the regulation of signaling pathways. Cell. 1994;79(7):1129–1132.
  • Walsh D, Li Z, Wu Y, Nagata K. Heat shock and the role of the heat shock proteins during neural plate induction in early mammalian CNS and brain development. Cell Mol Life Sci. 1997;53(2):198–211.
  • Sidera K, Samiotaki M, Yfanti E, Panayotou G, Patsavoudi E. Involvement of cell surface Hsp90 in cell migration reveals a novel role in the developing nervous system. J Biol Chem. 2004;279(44):45379–45388.
  • Auluck PK, Chan HY, Trojanowski JQ, Lee VM, Bonini NM. Chaperone suppression of alpha-synuclein toxicity in a Drosophila model for Parkinson’s disease. Science. 2002;295(5556):865–868.
  • Chan HY, Warrick JM, Gray-Board GL, Paulson HL, Bonini NM. Mechanisms of chaperone suppression of polyglutamine disease: selectivity, synergy and modulation of protein solubility in Drosophila. Hum Mol Genet. 2000;9(19):2811–2820.
  • Cummings CJ, Sun Y, Opal P, et al. Over-expression of inducible Hsp70 chaperone suppresses neuropathology and improves motor function in SCA1 mice. Hum Mol Genet. 2001;10(14):1511–1518.
  • Fernandez-Funez P, Nino-Rosales ML, de Gouyon B, et al. Identification of genes that modify ataxin-1-induced neurodegeneration. Nature. 2000;408(6808):101–106.
  • Kazemi-Esfarjani P, Benzer S. Genetic suppression of polyglutamine toxicity in Drosophila. Science. 2000;287(5459):1837–1840.
  • Warrick JM, Chan HY, Gray-Board GL, Chai Y, Paulson HL, Bonini NM. Suppression of polyglutamine-mediated neurodegeneration in Drosophila by the molecular chaperone Hsp70. Nat Genet. 1999;23(4):425–428.
  • Magrane J, Smith RC, Walsh K, Querfurth HW Heat shock protein 70 participates in the neuroprotective response to intracellularly expressed beta-amyloid in neurons. J Neurosci. 2004;24(7):1700–1706.
  • Wang L, Xie C, Greggio E, et al. The chaperone activity of heat shock protein 90 is critical for maintaining the stability of leucine-rich repeat kinase 2. J Neurosci. 2008;28(13):3384–3391.
  • Waza M, Adachi H, Katsuno M, et al. 17-AAG, an Hsp90 inhibitor, ameliorates polyglutamine-mediated motor neuron degeneration. Nat Med. 2005;11(10):1088–1095.
  • Chang ES. Stressed-out lobsters: crustacean hyperglycemic hormone and stress proteins. Integr Comp Biol. 2005;45(1):43–50.
  • Rochelle JM, Grossfeld RM, Bunting DL, Tytell M, Dwyer BE, Xue ZY. Stress protein synthesis by crayfish CNS tissue in vitro. Neurochem Res. 1991;16(5):533–542.
  • Zhang X-Y, Zhang M-Z, Zheng C-J, Liua J, Hu H-J. Identification of two hsp90 genes from the marine crab, Portunus trituberculatus and their specific expression profiles under different environmental conditions. Comp Biochem Physiol C Toxicol Pharmacol. 2009;150(4):465–473.
  • Fang DA, Wang Q, He L, Wang J, Wang Y. Characterization of heat shock protein 70 in the red claw crayfish (Cherax quadricarinatus): evidence for its role in regulating spermatogenesis. Gene. 2012;492(1):138–147.
  • Spees JL, Chang SA, Snyder MJ, Chang ES. Thermal acclimation and stress in the American lobster, Homarus americanus: equivalent temperature shifts elicit unique gene expression patterns for molecular chaperones and polyubiquitin. Cell Stress Chaperones. 2002;7(1):97–106.
  • Bittner GD. Long term survival of severed distal axonal stumps in vertebrates and invertebrates. Am Zool. 1988;28:1165–1179.
  • Bittner GD. Long-term survival of anucleate axons and its implications for nerve regeneration. Trends Neurosci. 1991;14(5):188–193.
  • Xue ZY, Grossfeld RM. Stress protein synthesis and accumulation after traumatic injury of crayfish CNS. Neurochem Res. 1993;18(2):209–218.
  • Zeng Y, Lu CP. Identification of differentially expressed genes in haemocytes of the crayfish (Procambarus clarkii) infected with white spot syndrome virus by suppression subtractive hybridization and cDNA microarrays. Fish Shellfish Immunol. 2009;26(4):646–650.
  • Chucholl C. Disjunct distribution pattern of Procambarus clarkii (Crustacea, Decapoda, Astacida, Cambaridae) in an artificial lake system in Southwestern Germany. Aquatic Invasions. 2011;6(1):109–113.
  • Huner JV Kowalczuk JG, Avault JW Jr. Calcium and magnesium levels in the intermolt(C4) carapaces of three species of freshwater crawfish (Cambaridae: decapoda). Comp Biochem Physiol A Comp Physiol. 1976;55(2a):183–185.
  • Wu R, Sun L, Lei M, Xie ST. [Molecular identification and expression of heat shock cognate 70 (HSC70) in the Pacific white shrimp Litopenaeus vannamei]. Mol Biol (Mosk). 2008;42(2):265—274. Russian.
  • Ginzinger DG. Gene quantification using real-time quantitative PCR: an emerging technology hits the mainstream. ExpHematol. 2002;30(6):503–512.
  • Bustin SA, Beaulieu JF, Huggett J, et al. MIQE precis: practical implementation of minimum standard guidelines for fluorescence-based quantitative real-time PCR experiments. BMC Mol Biol. 2010;11:74.
  • Nolan T, Hands RE, Bustin SA. Quantification of mRNA using real-time RT-PCR. Nat Protoc. 2006;1(3):1559–1582.
  • Zhang Y. I-TASSER server for protein 3D structure prediction. BMC Bioinformatics. 2008;9:40.
  • Zhang Y. I-TASSER: fully automated protein structure prediction in CASP8. Proteins. 2009;77 Suppl 9:100–113.
  • Gupta RS. Phylogenetic analysis of the 90 kD heat shock family of protein sequences and an examination of the relationship among animals, plants, and fungi species. Mol Biol Evol. 1995;12(6):1063–1073.
  • Stebbins CE, Russo AA, Schneider C, Rosen N, Hartl FU, Pavletich NP Crystal structure of an Hsp90-geldanamycin complex: targeting of a protein chaperone by an antitumor agent. Cell. 1997;89(2):239–250.
  • Young JC, Obermann WM, Hartl FU. Specific binding of tetratricopep- tide repeat proteins to the C-terminal 12-kDa domain of hsp90. J Biol Chem. 1998;273(29):18007–18010.
  • Mailhos C, Howard MK, Latchman DS. Heat shock proteins hsp90 and hsp70 protect neuronal cells from thermal stress but not from programmed cell death. J Neurochem. 1994;63(5):1787–1795.
  • Sanders BM. Stress proteins in aquatic organisms: an environmental perspective. Crit Rev Toxicol. 1993;23(1):49–75.
  • Pratt WB, Toft DO. Regulation of signaling protein function and trafficking by the Hsp90/Hsp70-based chaperone machinery. Exp Biol Med (Maywood). 2003;228(2):111–133.
  • Prodromou C, Roe SM, O’Brien R, Ladbury JE, Piper PW, Pearl LH. Identification and structural characterization of the ATP/ADP-binding site in the Hsp90 molecular chaperone. Cell. 1997;90(1):65–75.
  • Fontana J, Fulton D, Chen Y, et al. Domain mapping studies reveal that the M domain of hsp90 serves as a molecular scaffold to regulate Akt-dependent phosphorylation of endothelial nitric oxide synthase and NO release. Circ Res. 002;90(8):866–873.
  • Brunt SA, Silver JC. Molecular cloning and characterization of two different cDNAs encoding the molecular chaperone Hsp90 in the oomycete Achlya ambisexualis. Fungal Genet Biol. 2004;41(2):239–252.
  • Grenert JP, Sullivan WP, Fadden P, et al. The amino-terminal domain of heat shock protein 90 (hsp90) that binds geldanamycin is an ATP/ ADP switch domain that regulates hsp90 conformation. J Biol Chem. 1997;272(38):23843–23850.
  • Obermann WM, Sondermann H, Russo AA, Pavletich NP, Hartl FU. In vivo function of Hsp90 is dependent on ATP binding and ATP hydrolysis. J Cell Biol. 1998;143(4):901–910.
  • Bergerat A, de Massy B, Gadelle D, Varoutas PC, Nicolas A, Forterre P An atypical topoisomerase II from Archaea with implications for meiotic recombination. Nature. 1997;386(6623):414–417.
  • Johnson JL, Toft DO. A novel chaperone complex for steroid receptors involving heat shock proteins, immunophilins, and p23. J Biol Chem. 1994;269(40):24989–24993.
  • Johnson JL, Toft DO. Binding of p23 and hsp90 during assembly with the progesterone receptor. Mol Endocrinol. 1995;9(6):670–678.
  • Prodromou C, Pearl LH. Structure and functional relationships of Hsp90. Curr Cancer Drug Targets. 2003;3(5):301–323.
  • Robbins J, Dilworth SM, Laskey RA, Dingwall C. Two interdependent basic domains in nucleoplasmin nuclear targeting sequence: identification of a class of bipartite nuclear targeting sequence. Cell. 1991;64(3):615–623.
  • Li P, Zha J, Zhang Z, et al. Molecular cloning, mRNA expression, and characterization of Hsp90 gene from Chinese mitten crab Eriocheir japonica sinensis. Comp Biochem Physiol B Biochem Mol Biol. 2009;153(3):229–235.
  • Khan VR, Brown IR. The effect of hyperthermia on the induction of cell death in brain, testis, and thymus of the adult and developing rat. Cell Stress Chaperones. 2002;7(1):73–90.
  • Batulan Z, Shinder GA, Minotti S, et al. High threshold for induction of the stress response in motor neurons is associated with failure to activate HSF1. J Neurosci. 2003;23(13):5789–5798.
  • Brown IR, Rush SJ. Cellular localization of the heat shock transcription factors HSF1 and HSF2 in the rat brain during postnatal development and following hyperthermia. Brain Res. 1999;821(2):333–340.
  • Maroni P, Bendinelli P, Tiberio L, Rovetta F, Piccoletti R, Schiaffonati L. In vivo heat-shock response in the brain: signalling pathway and transcription factor activation. Brain Res Mol Brain Res. 2003;119(1):90–99.
  • Kaarniranta K, Oksala N, Karjalainen HM, et al. Neuronal cells show regulatory differences in the hsp70 gene response. Mol Brain Res. 2002;101(1—2):136–140.
  • Manzerra P, Brown IR. Expression of heat shock genes (hsp70) in the rabbit spinal cord: localization of constitutive and hyperthermia- inducible mRNA species. J Neurosci Res. 1992;31(4):606–615.
  • Manzerra P, Brown IR. The neuronal stress response: nuclear translocation of heat shock proteins as an indicator of hyperthermic stress. Exp Cell Res. 1996;229(1):35–47.
  • Taylor DM, De Koninck P, Minotti S, Durham HD. Manipulation of protein kinases reveals different mechanisms for upregulation of heat shock proteins in motor neurons and non-neuronal cells. Mol Cell Neurosci. 2007;34(1):20–33.
  • Sarge KD, Murphy SP, Morimoto RI. Activation of heat shock gene transcription by heat shock factor 1 involves oligomerization, acquisition of DNA-binding activity, and nuclear localization and can occur in the absence of stress. Mol Cell Biol. 1993;13(3):1392–1407.
  • Sorger PK, Lewis MJ, Pelham HR. Heat shock factor is regulated differently in yeast and HeLa cells. Nature. 1987;329(6134):81–84.
  • Sorger PK, Pelham HR. Yeast heat shock factor is an essential DNA-binding protein that exhibits temperature-dependent phosphorylation. Cell. 1988;54(6):855–864.
  • Batulan Z, Taylor DM, Aarons RJ, et al. Induction of multiple heat shock proteins and neuroprotection in a primary culture model of familial amyotrophic lateral sclerosis. NeurobiolDis. 2006;24(2):213–225.