124
Views
0
CrossRef citations to date
0
Altmetric
Review

Fragment-based drug discovery and protein–protein interactions

, &
Pages 13-26 | Published online: 18 Sep 2014

References

  • Toogood PL. Inhibition of protein–protein association by small molecules: approaches and progress. J Med Chem. 2002;45:1543–1558.
  • Eyrisch S, Helms V. Transient pockets on protein surfaces involved in protein–protein interaction. J Med Chem. 2007;50:3457–3464.
  • Nero TL, Morton CJ, Holien JK, Wielens J, Parker MW. Oncogenic protein interfaces: small molecules, big challenges. Nat Rev Cancer. 2014;14(4):248–262.
  • Arkin MR, Wells JA. Small-molecule inhibitors of protein–protein interactions: progressing towards the dream. Nature Rev Drug Discov. 2004;3:301–317.
  • Tse C, Shoemaker AR, Adickes J, et al. ABT-263: a potent and orally bioavailable Bcl-2 family inhibitor. Cancer Res. 2008;68:3421–3428.
  • Overington JP, Al-Lazikani B, Hopkins AL. How many drug targets are there? Nat Rev Drug Discov. 2006;5(12):993–996.
  • Ramani AK, Bunescu RC, Mooney RJ, Marcotte EM. Consolidating the set of known human protein–protein interactions in preparation for large-scale mapping of the human interactome. Genome Biol. 2005;6(5):R40.
  • Conte LL, Chothia C, Janin J. The atomic structure of protein–protein recognition sites. J Mol Biol. 1999;285:2177–2198.
  • Arkin MR, Randal M, DeLano WL, et al. Binding of small molecules to an adaptive protein–protein interface. PNAS. 2003;100(4):1603–1608.
  • Bogan AA, Thorn KS. Anatomy of hot spots in protein interfaces. J Mol Biol. 1998;280:1–9.
  • Cukuroglu E, Gursoy A, Keskin O. HotRegion: a database of predicted hot spot clusters. Nucleic Acids Res. 2012;40:D829–D833.
  • Winter C, Henschel A, Tuukkanen A, Schroeder M. Protein interactions in 3D: from interface evolution to drug discovery. J Struct Biol. 2012;179(3):347–358.
  • Cunningham BC, Wells JA. Minimized proteins. Curr Opin Struct Biol. 1997;7(4):457–462.
  • Clackson T, Wells JA. A hot spot of binding energy in a hormone-receptor interface. Science. 1995;267(5196):383–386.
  • Metz A, Ciglia E, Gohlke H. Modulating protein–protein interactions: from structural determinants of binding to druggability prediction to application. Curr Pharmaceutical Design. 2012;18:4630–4647.
  • Thorn KS, Bogan AA. ASEdb: a database of alanine mutations and their effects on the free energy of binding in protein interactions mutations and their effects on the free energy of binding in protein interactions. Bioinformatics. 2001;17:284–285.
  • Brenke R, Kozakov D, Chuang G-Y, et al. Fragment-based identification of druggable ‘hot spots’ of proteins using Fourier domain correlation techniques. Bioinformatics. 2009;25(5):621–627.
  • Moreira IS, Fernandes PA, Ramos MJ. Hot spots–a review of the protein–protein interface determinant amino-acid residues. Proteins. 2007;68:803–812.
  • Fuentes G, Oyarzabal J, Rojas AM. Databases of protein–protein interactions and their use in drug discovery. Curr Opin Drug Discov Devel. 2009;12(3):358–366.
  • Saalau-Bethell SM, Woodhead AJ, Chessari G, et al. Discovery of an allosteric mechanism for the regulation of HCV NS3 protein function. Nature Chem Biol. 2012;8:920–925.
  • Fry DC. Drug-like inhibitors of protein–protein interactions: a structural examination of effective protein mimicry. Curr Protein Pept Sci. 2008;9:240–247.
  • Fry DC. Small-molecule inhibitors of protein–protein interactions: how to mimic a protein partner. Curr Pharm Des. 2012;18:4679–4684.
  • Hendlich M, Rippmann F, Barnickel G. LIGSITE: automatic and efficient detection of potential small molecule binding sites in proteins. J Mol Graph. 1997;15:359–363.
  • Brady GP, Stouten PF. Fast prediction and visualization of protein binding pockets with PASS. J Comput Aided Mol Des. 2000;14(4):383–401.
  • Le Guilloux V, Schmidtke P, Tuffery P. Fpocket: an open source platform for ligand pocket detection. BMC Bioinformatics. 2009;10:168.
  • Smith GR, Sternberg MJ, Bates PA. The relationship between the flexibility of proteins and their conformational states on forming protein–protein complexes with an application to protein–protein docking. J Mol Biol. 2005;347(5):1077–1101.
  • Bray JK, Weiss DR, Levitt M. Optimized torsion-angle normal modes reproduce conformational changes more accurately than cartesian modes. Biophys J. 2011;101(12):2966–2969.
  • Zhang Z, Shi Y, Liu H. Molecular dynamics simulations of peptides and proteins with amplified collective motions. Biophys J. 2003;84(6):3583–3593.
  • Lichtarge O, Bourne HR, Cohen FE. An evolutionary trace method defines binding surfaces common to protein families. J Mol Biol. 1996;257:342–358.
  • Guo W, Wisniewski JA, Ji H. Hot spot-based design of small-molecule inhibitors for protein–protein interactions. Bioorg Med Chem Lett. 2014;24:2546–2554.
  • Lise S, Buchan D, Pontil M, Jones DT. Predictions of hot spot residues at protein–protein interfaces using support vector machines. PLoS One. 2011;6(2):e16774.
  • DeLano WL. Unraveling hot spots in binding interfaces: progress and challenges. Curr Opin Struct Biol. 2002;12(1):14–20.
  • Srinivasan J, Cheatham TE, Cieplak P, Kollman PA, Case DA. Continuum solvent studies of the stability of DNA, RNA and phosphoramidate-DNA helices. J Am Chem Soc. 1998;120:9401–9409.
  • Moreira IS, Fernandes PA, Ramos MJ. Computational alanine scanning mutagenesis – an improved methodological approach. J Comput Chem. 2007;28:644–654.
  • Gohlke H, Kiel C, Case DA. Insights into protein–protein binding by binding free energy calculation and free energy decomposition for the Ras-Raf and Ras-RalGDS complexes. J Mol Biol. 2003;330(4):891–913.
  • Schymkowitz J, Borg J, Stricher F, Nys R, Rousseau F, Serrano L. The FoldX web server: an online force field. Nucleic Acids Res. 2005;33(Web Server issue):W382–W388.
  • Krüger DM, Gohlke H. DrugScorePPI webserver: fast and accurate in silico alanine scanning for scoring protein–protein interactions. Nucleic Acids Res. 2010;38(Web Server issue):W480–W486.
  • Sugaya N, Kanai S, Furuya T. Dr PIAS2.0: an update of a database of druggable protein–protein interactions. Database (Oxford). 2012;2012:bas034.
  • Basse MJ, Betzi S, Bourgeas R, et al. 2P2Idb: a structural database dedicated to orthosteric modulation of protein–protein interactions. Nucleic Acid Res. 2013;41:824–827.
  • Krumrine J, Raubacher F, Brooijmans N, Kuntz I. Principles and methods of docking and ligand design. Methods Biochem Anal. 2003;44:443–476.
  • Case DA, Cheatham TE, Darden T, et al. The Amber biomolecular simulation programs. J Comput Chem. 2005;26(16):1668–1688.
  • Voet A, Zhang KYJ. Pharmacophore modelling as a virtual screening tool for the discovery of small molecule protein–protein interaction inhibitors. Curr Pharm Des. 2012;18:4586–4598.
  • Singh SS, Jarp S, Narasu L. Fragment based design, docking and biological evaluation to identify novel PARP1 inhibitors and their role in cancer. Int J Comput Med Chem. 2013;1:35–43.
  • Congreve M, Carr R, Murray C, Jhoti H. A “rule of three” for fragment-based lead discovery? Drug Discov Today. 2003;8(19):876–877.
  • Sauer WH, Schwarz MK. Molecular shape diversity of combinatorial libraries: a prerequisite for broad bioactivity. J Chem Inf Comput Sci. 2003;43(3):987–1003.
  • Morelli X, Bourgeas R, Roche P. Chemical and structural lessons from recent successes in protein–protein interaction inhibition (2P2I). Curr Opin Chem Biol. 2011;15:475–481.
  • Sperandio O, Reynès CH, Camproux A-C, Villoutreix BO. Rationalizing the chemical space of protein–protein interaction inhibitors. Drug Discov Today. 2010;15:220–229.
  • Bower J, Pannifer A. Using fragment-based technologies to target protein–protein interactions. Curr Pharma Design. 2012;18:4685–4696.
  • Ferenczy GG, Keseru GM. How are fragments optimized? A retrospective analysis of 145 fragment optimizations. J Med Chem. 2013;56:2478–2486.
  • Smith RD, Engdahl AL, Dunbar JB Jr, Carlson HA. Biophysical limits of protein–ligand binding. J Chem Inf Model. 2012;52(8):2098–2106.
  • Syafrizayanti, Betzen C, Hoheisel JD, Kastelic D. Methods for analyzing and quantifying protein–protein interaction. Expert Rev Proteomics. 2014;11(1):107–120.
  • Pierceall WE, Zhang L, Hughes DE. Affinity capillary electrophoresis analyses of protein–protein interactions in target-directed drug discovery. Methods Mol Biol. 2004;261:187–198.
  • Vanwetswinkel S, Heetebrij RJ, van Duynhoven J, et al. TINS, target immobilized NMR screening: an efficient and sensitive method for ligand discovery. Chem Biol. 2005;12(2):207–216.
  • Jerabek-Willemsen M, Wanner TAR, Roth HM, Duhr S, Baaske P, Breitsprecher D. MicroScale Thermophoresis: interaction analysis and beyond. J Mol Struct. Epub March 16, 2014.
  • Peat TS, Rhodes DI, Vandegraaff N, et al. Small molecule inhibitors of the LEDGF site of human immunodeficiency virus integrase identified by fragment screening and structure based design. PLoS One. 2012;7(7):e40147.
  • Shuker SB, Hajduk PJ, Meadows RP, Fesik SW. Discovering high-affinity ligands for proteins: SAR by NMR. Science. 1996;274:1531–1534.
  • Petros AM, Dinges J, Augeri DJ, et al. NMR-derived structure of the inhibitor N-(4″-fluorobiphenyl-4-ylcarbonyl)-3-nitro-4-(2-phenylsulfanylethyl amino)benzenesulfonamide bound to the antiapoptotic protein Bcl-xL. J Med Chem. 2006;49:656–663.
  • Friberg A, Vigil D, Zhao B, et al. Discovery of potent myeloid cell leukemia 1 (Mcl-1) inhibitors using fragment-based methods and structure-based design. J Med Chem. 2013;56(1):15–30.
  • Fulda S, Vucic D. Targeting IAP proteins for therapeutic intervention in cancer. Nature Rev Drug Disc. 2012;11:109–124.
  • Darding M, Meier P. IAPs: guardians of RIPK. Cell Death Differ. 2012;19:58–66.
  • Shiozaki EN, Shi Y. Caspases, IAPs and Smac/DIABLO: mechanisms from structural biology. Trends Biochem Sci. 2004;29:486–494.
  • Chessari G, Buck I, Coyle J, et al. Novel small molecule antagonists of XIAP, cIAP1/2 generated by fragment-based drug discovery. Poster presented at the ESH International Conference on Mechanisms of Cell Death and Disease: Advances in Therapeutic Intervention and Drug Development; October 14–18, 2010; Cascais, Portugal.
  • Chessari G, Ahn M, Buck I, et al. AT-IAP, a dual cIAP1 and XIAP antagonist with oral antitumor activity in melanoma models. Poster presented at AACR Annual Meeting; April 6–10, 2013; Washington, DC.
  • Ahn M, Ward G, Chessari G, et al. Potent, dual cIAP1/XIAP antagonists induce apoptosis in a melanoma stem cell population. Poster presented at AACR-NCI-EORTC Molecular Targets and Cancer Therapeutics Conference; October 19–23, 2013; Boston, MA.
  • Yao N, Reichert P, Taremi SS, Prosise WW, Weber PC. Molecular views of viral polyprotein processing revealed by the crystal structure of the hepatitis C virus bifunctional protease-helicase. Structure. 1999;7:1353–1363.
  • Pellegrini L, Yu DS, Lo T, et al. Insights into DNA recombination from the structure of a RAD51-BRCA2 complex. Nature. 2002;420:287–293.
  • Scott DE, Ehebauer MT, Pukala T, et al. Using a fragment-based approach to target protein–protein interactions. ChemBioChem. 2013;14:332–342.
  • Arrowsmith CH, Bountra C, Fish PV, Lee K, Schapira M. Epigenetic protein families: a new frontier for drug discovery. Nat Rev Drug Discov. 2012;11(5):384–400.
  • Filippakopoulos P, Qi J, Picaud S, et al. Selective inhibition of BET bromodomains. Nature. 2010;468(7327):1067–1073.
  • Nicodeme E, Jeffrey KL, Schaefer U, et al. Suppression of inflammation by a synthetic histone mimic. Nature. 2010;468(7327):1119–1123.
  • Chung CW, Dean AW, Woolven JM, Bamborough P. Fragment-based discovery of bromodomain inhibitors part 1: inhibitor binding modes and implications for lead discovery. J Med Chem. 2012;55(2):576–586.
  • Bamborough P, Diallo H, Goodacre JD, et al. Fragment-based discovery of bromodomain inhibitors part 2: optimization of phenylisoxazole sulfonamides. J Med Chem. 2012;55(2):587–596.
  • Gehling VS, Hewitt MC, Vaswani RG, et al. Discovery, design, and optimization of isoxazole azepine BET inhibitors. ACS Med Chem Lett. 2013;4:835–840.
  • Fish PV, Filippakopoulos P, Bish G, et al. Identification of a chemical probe for bromo and extra C-terminal bromodomain inhibition through optimization of a fragment-derived hit. J Med Chem. 2012;55(22):9831–9837.
  • Zhao L, Cao D, Chen T, et al. Fragment-based drug discovery of 2-thiazolidinones as inhibitors of the histone reader BRD4 bromodomain. J Med Chem. 2013;56(10):3833–3851.
  • Irwin JJ, Sterling T, Mysinger MM, Bolstad ES, Coleman RG. ZINC: a free tool to discover chemistry for biology. J Chem Inf Model. 2012;52(7):1757–1768.
  • Rouhana J, Hoh F, Estaran S, et al. Fragment-based identification of a locus in the Sec7 domain of Arno for the design of protein–protein interaction inhibitors. J Med Chem. 2013;56:8497–8511.