271
Views
2
CrossRef citations to date
0
Altmetric
Review

Bronchopulmonary Dysplasia: An Overview

&
Pages 67-79 | Published online: 25 Sep 2020

References

  • Northway WH, Rosan RC, Porter DY. Pulmonary disease following respirator therapy of hyaline-membrane disease. Bronchopulmonary Dysplasia. N Eng J Med. 1967;276(7):357–368. doi:10.1056/NEJM196702162760701
  • Merritt TA, Deming DD, Boynton BR. The ‘new’ bronchopulmonary dysplasia: challenges and commentary. Semin Fetal Neonatal Med. 2009;14:345–357.
  • Shennan AT, Dunn MS, Ohlsson A, Lennox K, Hoskins EM. Abnormal pulmonary outcomes in premature infants: prediction from oxygen requirement in the neonatal period. Pediatrics. 1988;8(2):527–532.
  • Beam KS, Aliaga S, Ahlfeld SK, Cohen-Wolkowiez M, Smith PB, Laughon MM. A systematic review of randomized controlled trials for the prevention of bronchopulmonary dysplasia in infants. J Perinatol. 2014;34:705–710.
  • Van Marter LJ. Epidemiology of bronchopulmonary dysplasia. Semin Fetal Neonatal Med. 2009;14:358–366. doi:10.1016/j.siny.2009.08.007
  • Jobe AJ. The new BPD: an arrest of lung development. Pediatr Res. 1999;46(6):641–643.
  • Jobe AH, Bancalari E. Bronchopulmonary dysplasia. Am J Respir Crit Care Med. 2001;163(7):1723–1729.
  • Jobe AH. Mechanisms of lung injury and bronchopulmonary dysplasia. Am J Perinatol. 2016;33:1076–1078.
  • Speer CP. Inflammation and bronchopulmonary dysplasia. Semin Neonatol. 2003;8:29–38.
  • Hislop AA, Wigglesworth JS, Desai R. Alveolar development in the human fetus and infant. Early Hum Dev. 1986;13:1–11. doi:10.1016/0378-3782(86)90092-7
  • Day CL, Ryan RM. Bronchopulmonary dysplasia: new becomes old again! Pediatr Res. 2017;81(1):210–213. doi:10.1038/pr.2016.201
  • Coalson JJ. Pathology of bronchopulmonary dysplasia. Semin Perinatol. 2006;30:179–184. doi:10.1053/j.semperi.2006.05.004
  • Husain AN, Siddiqui NH, Stocker JT. Pathology of arrested acinar development in postsurfactant bronchopulmonary dysplasia. Hum Pathol. 1998;29:710–717.
  • Thibeault DW, Mabry SM, Ekekezie II, Truog WE. Lung elastic tissue maturation and perturbations during the evolution of chronic lung disease. Pediatrics. 2000;106:1452–1459.
  • Attar MA, Donn SM. Mechanisms of ventilator-induced lung injury in premature infants. Semin Neonatol. 2002;7:353–360.
  • Toews GB. Cellular alterations in fibroproliferative lung disease. Chest. 1999;116(1 Suppl):112S–116S.
  • Fanaroff AA, Stoll BJ, Wright LL, et al.; NICHD Neonatal Research Network. Trends in neonatal morbidity and mortality for very low birthweight infants. Am J Obstet Gynec. 2007;196:147.e1–147.e8.
  • Fanaroff AA, Wright LL, Stevenson KD, et al. Very-low-birth-weight outcomes of the National Institute of Child Health and Human Development Neonatal Research Network, May 1991 through December 1992. Am J Obstet Gynecol. 1998;179:1632–1639.
  • Hack M, Horbar JD, Malloy MH, Tyson JE, Wright E, Wright L. Very low birth weight outcomes of the National Institute of Child Health and Human Developmental Neonatal Network. Pediatrics. 1991;87:587–597.
  • Costeloe K, Hennessy E, Gibson AT, Marlow N, Wilkinson AR. The EPICure study: outcomes to discharge from hospital for infants born at the threshold of viability. Pediatrics. 2000;106:659–671.
  • Bassler D. Inhalation or instillation of steroids for the prevention of bronchopulmonary dysplasia. Neonatology. 2015;107:358–359.
  • Ryan RM, Keller RL, Poindexter BB, et al. Respiratory medications in infants <29 weeks during the first year postdischarge: the prematurity and respiratory outcomes program (PROP) consortium. J Pediatr. 2019;208:148–155.
  • Stoll BJ, Hansen NI, Bell EF, et al.; Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network. Trends in care practices, morbidity, and mortality of extremely preterm neonates, 1993–2012. JAMA. 2015;314(10):1039–1051.
  • Isayama T, Lee SK, Yang J, Lee D. Revisiting the definition of bronchopulmonary dysplasia effect of changing panoply of respiratory support for preterm neonates. JAMA Pediatr. 2017;171(3):271–279.
  • Poindexter BB, Feng R, Schmidt B, et al. Comparisons and limitations of current definitions of bronchopulmonary dysplasia for the prematurity and respiratory outcomes program. Ann Am Thorac Soc. 2015;12:1822–1830.
  • Akangire G, Manimtim W, Nyp MF, et al. Clinical outcomes among diagnostic subgroups of infants with severe bronchopulmonary dysplasia through 2 years of age. Am J Perinatol. 2018;35:1376–1387.
  • Schmalisch G, Wilitzki S, Roehr CC, Proquitte H, Buhrer C. Development of lung function in very low birth weight infants with or without bronchopulmonary dysplasia: longitudinal assessment during the first 15 months of corrected age. BMC Pediatr. 2012;12:37.
  • Keller RL, Feng R, DeMauro SB, et al. Bronchopulmonary dysplasia and perinatal characteristics predict 1-year respiratory outcomes in newborns born at extremely low gestational age: a prospective cohort study. J Pediatr. 2017;187:89–97.
  • Hoo AF, Henschen M, Dezateux C, Costeloe K, Stocks J. Respiratory function among preterm infants whose mothers smoked during pregnancy. Am J Respir Crit Care Med. 1998;1538:700–705.
  • Hoo AF, Stocks J, Lum S, et al. Development of lung function in early life: influence of birth weight in infants of nonsmokers. Am J Respir Crit Care Med. 2004;170:527–533.
  • Jensen EA, Foglia EE, Dysart KC, et al. Adverse effects of small for gestational age differ by gestational week among very preterm infants. Arch Dis Child Fetal Neonatal Ed. 2019;104:F192–F198.
  • Watterberg KL, Demers LM, Scott SM, Murphy S. Chorioamnionitis and early lung inflammation in infants in whom bronchopulmonary dysplasia develops. Pediatrics. 1996;97:210–215.
  • Bernirschke K. Abnormalities of the human placenta. NeoReviews. 2005;6(9):e414–e423. doi:10.1542/neo.6-9-e414
  • Gomez R, Romero R, Ghezzi F, Yoon BH, Mazor M, Berry SM. The fetal inflammatory response syndrome. Am J Obstet Gynecol. 1998;179:194–202.
  • Viscardi RM. Perinatal inflammation and lung injury. Semin Fetal Neonatal Med. 2012;17(1):30–35.
  • Massaro GD, Massaro D. Formation of pulmonary alveoli and gas-exchange surface area: quantitation and regulation. Annu Rev Physiol. 1996;58:73–92.
  • Jobe AH, Newnham J, Willet K, Sly P, Ikegami M. Fetal versus maternal and gestational age effects of repetitive antenatal glucocorticoids. Pediatrics. 1998;102:1116–1125.
  • Pinkerton KE, Willet KE, Peake J, Sly PD, Jobe AH, Ikegami M. Prenatal glucocorticoid and T4 effects on lung morphology in preterm lambs. Am J Respir Crit Care Med. 1997;156:624–630.
  • Roberts D, Brown J, Medley N, Dalziel SR. Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth. Cochrane Database Syst Rev. 2017;3:CD004454.
  • Jensen EA. Prevention of bronchopulmonary dysplasia: a summary of evidence-based strategies. NeoReviews. 2019;20(4):e189–e201. doi:10.1542/neo.20-4-e189
  • Carlo WA, McDonald SA, Fanaroff AA, et al.; Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network. Association of antenatal corticosteroids with mortality and neurodevelopmental outcomes among infants born at 22 to 25 weeks’ gestation. JAMA. 2011;306(21):2348–2358. doi:10.1001/jama.2011.1752.
  • El-Sayed YY, Borders AEB; American College of Obstetricians and Gynecologists’ Committee on Obstetric Practice. Antenatal corticosteroid therapy for fetal maturation. Committee Opinion No 713. Obstet Gynecol. 2017;130(2):e102–e109.
  • St. John EB, Carlo WA. Respiratory distress syndrome in VLBW infants: changes in management and outcomes observed by the NICHD neonatal research network. Semin Perinatol. 2003;27(4):288–292. doi:10.1016/S0146-0005(03)00056-9
  • Langston C, Kida D, Reed M, Thurlbeck W. Human lung growth in late gestation and in the neonate. Am Rev Respir Dis. 1984;129:607–613.
  • Laughon MM, Smith PB, Bose C. Prevention of bronchopulmonary dysplasia. Semin Fetal Neonatal Med. 2009;14:374–382. doi:10.1016/j.siny.2009.08.002
  • Carlo WA, Stark AR, Wright LL, et al. Minimal ventilation to prevent bronchopulmonary dysplasia in extremely-low-birth-weight infants. J Pediatr. 2002;141:370–374. doi:10.1067/mpd.2002.127507
  • Thome U, Kossel H, Lipowsky G, et al. Permissive hypercapnia in extremely low birthweight infants (PHELBI): a randomised controlled multicentre trial. Lancet. 2015;3:534–543.
  • Muscedere JG, Mullen JB, Gan K, Slusky AS. Tidal ventilation at low airway pressures can augment lung injury. Am J Respir Crit Care Med. 1994;149:1327–1334. doi:10.1164/ajrccm.149.5.8173774
  • Tremblay LN, Slutsky AS. Ventilator-induced injury: from barotrauma to biotrauma. Proc Assoc Am Physicians. 1998;110(6):482–488.
  • Tremblay L, Valenza F, Ribeiro SP, Li J, Slutsky AS. Injurious ventilatory strategies increase cytokines and c-fos m-RNA expression in an isolated rat lung model. J Clin Invest. 1997;99(5):944–952. doi:10.1172/JCI119259
  • Finer NN, Carlo WA, et al.; SUPPORT Study Group of the Eunice Kennedy Shriver NICHD Neonatal Research Network. Early CPAP versus surfactant in extremely preterm infants. [Published correction N Engl J Med. 2010 Jun 10;362(23):2235]. N Engl J Med. 2010;362(21):1970–1979.
  • Morley CJ, Davis PG, Doyle LW, et al. Nasal CPAP or intubation at birth for very preterm infants. N Engl J Med. 2008;358(7):700–708.
  • Dunn MS, Kaempf J, de Klerk A, et al. Randomized trial comparing 3 approaches to the initial respiratory management of preterm neonates. Pediatrics. 2011;128:e1069–e1076.
  • Subramaniam P, Ho JJ, Davis PG. Prophylactic nasal continuous positive airway pressure for preventing morbidity and mortality in very preterm infants. Cochrane Database Syst Rev. 2016;6:CD001243.
  • Lemyre B, Davis PG, De Paoli AG, Kirpalani H. Nasal intermittent positive pressure ventilation (NIPPV) versus nasal continuous positive airway pressure (NCPAP) for preterm neonates after extubation. Cochrane Database Syst Rev. 2017;2:CD003212.
  • Committee on Fetus and Newborn. Policy Statement. Respiratory support in preterm infants at birth. Pediatrics. 2014;133(1):171–174.
  • Klingenberg C, Wheeler KI, McCallion N, Morley CJ, Davis PG. Volume-targeted versus pressure-limited ventilation in neonates. Cochrane Database Syst Rev. 2017;10:CD003666.
  • Yoder BA, Siler-Khodr T, Winter VT, Coalson JJ. High-frequency oscillatory ventilation: effects on lung function, mechanics, and airway cytokines in the immature baboon model for neonatal chronic lung disease. Am J Respir Crit Care Med. 2000;162:1867–1876.
  • Cools F, Offringa M, Askie LM. Elective high frequency oscillatory ventilation versus conventional ventilation for acute pulmonary dysfunction in preterm infants. Cochrane Database Syst Rev. 2015;3(3):CD000104.
  • Courtney SE, Durand DJ, Asselin JM, et al. High-frequency oscillatory ventilation versus conventional mechanical ventilation for very-low-birth-weight infants. N Engl J Med. 2002;347:643–652.
  • Oh W, Poindexter BB, Perritt R, et al.; Neonatal Research Network. Association between fluid intake and weight loss during the first ten days of life and risk of bronchopulmonary dysplasia in extremely low birth weight infants. J Pediatr. 2005;147(6):786–790.
  • Palta M, Gabbert D, Weinstein MR, Peters ME. Multivariate assessment of traditional risk factors for chronic lung disease in very low birth weight neonates. The Newborn Lung Project. J Pediatr. 1991;119(2):285–292.
  • Wiswell TE, Tin W, Ohler K. Evidence-based use of adjunctive therapies to ventilation. Clin Perinatol. 2007;34:191–204.
  • Slaughter JL, Stenger MR, Reagan PB. Variation in the use of diuretic therapy for infants with bronchopulmonary dysplasia. Pediatrics. 2013;131:716–723.
  • Dikshit K, Vyden JK, Forrester JS, et al. Renal and extrarenal hemodynamic effects of furosemide in congestive heart failure after acute myocardial infarction. N Engl J Med. 1973;288(21):1087–1090.
  • Stewart A, Brion LP, Ambrosio-Perez I. Diuretics acting on the distal renal tubule for preterm infants with (or developing) chronic lung disease. Cochrane Database Syst Rev. 2011;9:CD001817.
  • Blaisdell CJ, Troendle J, Azjicek A. Acute responses to diuretic therapy in extremely low gestational age newborns: results from the prematurity and respiratory outcomes program cohort study. J Pediatr. 2018;197:42–47.
  • Almirall JJ, Dolman CS, Eidelman DH. Furosemide-induced bronchodilation in the rat bronchus: evidence of a role for prostaglandins. Lung. 1997;175(3):155–163.
  • Bland RD, McMillan DD, Bressack MA. Decreased pulmonary transvascular fluid filtration in awake newborn lambs after intravenous furosemide. J Clin Invest. 1978;62(3):601–609.
  • Demling RH, Will JA. The effect of furosemide on the pulmonary transvascular fluid filtration rate. Crit Care Med. 1978;6(5):317–319.
  • Green TP, Thompson TR, Johnson DE, Lock JE. Furosemide use in premature infants and appearance of patent ductus arteriosus. Am J Dis Child. 1981;135(3):239–243.
  • Green TP, Thompson TR, Johnson DE, Lock JE. Furosemide promotes patent ductus arteriosus in premature infants with the respiratory-distress syndrome. N Engl J Med. 1983;308(13):743–748.
  • Toyoshima K, Momma K, Nakanishi T. In vivo dilatation of the ductus arteriosus induced by furosemide in the rat. Pediatr Res. 2010;67(2):173–176.
  • Baud O, Maury L, Lebail F, et al. Effect of early low-dose hydrocortisone on survival without bronchopulmonary dysplasia in extremely preterm infants (PREMILOC): a double-blind, placebo-controlled, multicentre, randomised trial. Lancet. 2016;387(10030):1827–1836.
  • Watterberg KL, Scott SM. Evidence of early adrenal insufficiency in babies who develop bronchopulmonary dysplasia. Pediatrics. 1995;95:120–125.
  • Watterberg KL, Gerdes JS, Gifford KL, Lin HM. Prophylaxis against early adrenal insufficiency to prevent chronic lung disease in premature infants. Pediatrics. 1999;104:1258–1263.
  • Watterberg KL, Gerdes JS, Cole CH, et al. Prophylaxis of early adrenal insufficiency to prevent bronchopulmonary dysplasia: a multicenter trial. Pediatrics. 2004;114:1649–1657.
  • Doyle LW, Ehrenkranz RA, Halliday HL. Early (<8 days) postnatal corticosteroids for preventing chronic lung disease in preterm infants. Cochrane Database Syst Rev. 2014;13(5):CD001146.
  • Ghanta S, Tropea LK, Christou H. An update on pharmacologic approaches to bronchopulmonary dysplasia. Semin Perinatol. 2013;37:115–123.
  • Stark AR, Carlo WA, Tyson JE, et al. Adverse effects of early dexamethasone in extremely-low-birth-weight infants. National Institute of Child Health and Human Development Neonatal Research Network. N Engl J Med. 2001;344:95–101.
  • Kelly EN, Shah VS, Levenbach J, et al. Inhaled and systemic steroid exposure and neurodevelopmental outcome of preterm neonates. J Matern Fetal Neonatal Med. 2018;31(20):2665–2672.
  • Tin W, Wiswell TE. Drug therapies in bronchopulmonary dysplasia: debunking the myths. Semin Fetal Neonatal Med. 2009;14:383–390.
  • American Academy of Pediatrics Committee on Fetus and Newborn & Canadian Paediatric Society Fetus and Newborn Committee. Postnatal corticosteroids to treat or prevent chronic lung disease in preterm infants. Pediatrics. 2002;109(2):330–338.
  • Committee on Fetus and Newborn. Policy statement-postnatal corticosteroids to prevent or treat bronchopulmonary dysplasia. Pediatrics. 2010;126(4):800–808.
  • Donn SM. Bronchopulmonary dysplasia: myths of pharmacologic management. Semin Fetal Neonatal Med. 2017;22(5):354–358.
  • Jobe AH, Ikegami M. Mechanisms initiating lung injury in the preterm. Early Hum Dev. 1998;53(1):81–94.
  • Kribs A, Pillekamp F, Hünseler C, et al. Early administration of surfactant in spontaneous breathing with nCPAP: feasibility and outcome in extremely premature infants (postmenstrual age <27 weeks). Paediatr Anaesth. 2007;17:364–369.
  • Bahadue FL, Soll R. Early versus delayed selective surfactant treatment for neonatal respiratory distress syndrome. Cochrane Database Syst Rev. 2012;11:CD001456.
  • Stevens TP, Blennow M, Myers EH, Soll R. Early surfactant administration with brief ventilation vs. selective surfactant and continued mechanical ventilation for preterm infants with or at risk for respiratory distress syndrome. Cochrane Database Syst Rev. 2007;4:CD003063.
  • Vannozzi I, Ciantelli M, Moscuzza F, et al. Catheter and laryngeal mask endotracheal surfactant therapy: the CALMEST approach as a novel MIST technique. J Matern Fetal Neonatal Med. 2017;30(19):2375–2377.
  • Kurepa D, Perveen S, Lipener Y, Kakkilaya V. The use of less invasive surfactant administration (LISA) in the United States with review of the literature. J Perinatol. 2019;39:426–432.
  • Schmidt B, Roberts RS, Davis P, et al. Caffeine therapy for apnea of prematurity. N Engl J Med. 2006;354:2112–2121.
  • Davis JM, Bhutani VK, Stefano JL, et al. Changes in pulmonary mechanics following caffeine administration in infants with bronchopulmonary dysplasia. Pediatr Pulmonol. 1989;6:49–52.
  • Ballard RA, Ruog WE, Cnaan A, et al.; NO CLD Study Group. Inhaled nitric oxide in preterm infants undergoing mechanical ventilation. [published correction appears in N Engl J Med. 2007; 357:1444–1445]. N Engl J Med. 2006;355(4):343–353.
  • Hasan SU, Potenziano J, Konduri GG, et al. Effect of inhaled nitric oxide on survival without bronchopulmonary dysplasia in preterm infants a randomized clinical trial. JAMA Pediatr. 2017;171(11):1081–1089.
  • Barrington KJ, Finer N, Pennaforte T. Inhaled nitric oxide for respiratory failure in preterm infants. Cochrane Database Syst Rev. 2017;1(1):CD000509.
  • Murtha AP, Edwards JM. The role of mycoplasma and ureaplasma in adverse pregnancy outcomes. Obstet Gynecol Clin North Am. 2014;33:697–702.
  • Viscardi RM, Kallapur SG. Role of ureaplasma respiratory tract colonization in BPD pathogenesis: current concepts and update. Clin Perinatol. 2015;42(4):719–738.
  • Jaffe A, Bush A. Anti-inflammatory effects of macrolides in lung disease. Pediatr Pulmonol. 2001;31(6):464–473.
  • Aghai ZH, Kode A, Saslow JG, et al. Azithromycin suppresses activation of nuclear factor-kappa B and synthesis of pro-inflammatory cytokines in tracheal aspirate cells from premature infants. Pediatr Res. 2007;62(4):483–488. doi:10.1203/PDR.0b013e318142582d
  • Viscardi RM, Othman AA, Hassan HE, et al. Azithromycin to prevent bronchopulmonary dysplasia in Ureaplasma-infected preterm infants: pharmacokinetics, safety, microbial response, and clinical outcomes with a 20-milligram-er-kilogram single intravenous dose. Antimicrob Agents Chemother. 2013;57(5):2127–2133. doi:10.1128/AAC.02183-12
  • Smith C, Egunsola O, Choonara I, Kotecha S, Jacqz-Aigrain E, Sammons H. Use and safety of azithromycin in neonates: a systematic review. BMJ Open. 2015;5:e008194. doi:10.1136/bmjopen-2015-008194
  • Blomhoff R, Green MH, Norum KR. Vitamin A: physiological and biochemical processing. Annu Rev Nutr. 1992;12:37–57. doi:10.1146/annurev.nu.12.070192.000345
  • Tyson JE, Wright LL, Oh W, et al. Vitamin A supplementation for extremely-low-birth-weight infants. N Engl J Med. 1999;340:1962–1968. doi:10.1056/NEJM199906243402505
  • Darlow BA, Graham PJ, Rojas-Reyes MX. Vitamin A supplementation to prevent mortality and short- and long-term morbidity in very low birth weight infants. Cochrane Database Syst Rev. 2016;8:CD000501.
  • Valenzuela-Stutman D, Marshall G, Tapia JL, et al. Bronchopulmonary dysplasia: risk prediction models for very-low-birth-weight infants. J Perinatol. 2019;39:1275–1281. doi:10.1038/s41372-019-0430-x
  • Schmidt B, Davis P, Moddemann D, et al. Long-term effects of indomethacin prophylaxis in extremely-low-birth-weight infants. N Engl J Med. 2001;344(26):1966–1972. doi:10.1056/NEJM200106283442602
  • Jensen EQ, Foglia EE, Schmidt B. Association between prophylactic indomethacin and death or bronchopulmonary dysplasia: a systematic review and meta-analysis of observational studies. Semin Perinatol. 2018;42:228–234. doi:10.1053/j.semperi.2018.05.005
  • Ohlsson A, Shah SS. Ibuprofen for the prevention of patent ductus arteriosus in preterm and/or low birth weight infants. Cochrane Database Syst Rev. 2020;1:CD004213.
  • Cooke L, Steer PA, Woodgate PG. Indomethacin for asymptomatic patent ductus arteriosus in preterm infants. Cochrane Database Syst Rev. 2003;1:CD003745.
  • Carlo WA, Finer NN, et al.; SUPPORT Study Group of the Eunice Kennedy Shriver NICHD Neonatal Research Network. Target ranges of oxygen saturation in extremely preterm infants. N Engl J Med. 2010;362(21):1959–1969.
  • Askie LM, Henderson-Smart DJ, Irwig L, Simpson JM. Oxygen-saturation targets and outcomes in extremely preterm infants. N Engl J Med. 2003;349:959–970. doi:10.1056/NEJMoa023080
  • The STOP-ROP Multicenter Study Group. Supplemental Therapeutic Oxygen for Prethreshold Retinopathy of Prematurity (STOP-ROP), a randomized, controlled trial. I: primary outcomes. Pediatrics. 2000;105:295–310. doi:10.1542/peds.105.2.295
  • Manja V, Lakshminrusimha S, Cook DJ. Oxygen saturation target range for extremely preterm infants: a systematic review and meta-analysis. JAMA Pediatr. 2015;169(4):332–340. doi:10.1001/jamapediatrics.2014.3307
  • Cummings JJ, Polin RA; AAP Committee on Fetus and Newborn. Oxygen targeting in extremely low birth weight infants. Pediatrics. 2016;138(2):e20161576. doi:10.1542/peds.2016-1576
  • Askie LM, Darlow BA, Finer N, et al. Association between oxygen saturation targeting and death or disability in extremely preterm infants in the neonatal oxygenation prospective meta-analysis collaboration. JAMA. 2018;319(21):2190–2201. doi:10.1001/jama.2018.5725
  • Slaughter JL, Stenger MR, Reagan PB, Jadcherla SR. Inhaled bronchodilator use for infants with bronchopulmonary dysplasia. J Perinatol. 2015;35:61–66. doi:10.1038/jp.2014.141
  • Koch A, Kreutzer KB, Poets C, et al. The impact of inhaled bronchodilators on bronchopulmonary dysplasia: a nonrandomized comparison from the NEuroSIS trial. J Matern Fetal Neonatal Med. 2019:1–3. doi:10.1080/14767058.2019.1590331.
  • Denjean A, Paris-LLado J, Zupan V, et al. Inhaled salbutamol and beclomethasone for preventing broncho-pulmonary dysplasia: a randomised double-blind study. Eur J Pediatr. 1998;157(11):926–931. doi:10.1007/s004310050969
  • Doyle LW, Cheong JL, Ehrenkranz RA, Halliday HL. Late (>7 days) systemic postnatal corticosteroids for prevention of bronchopulmonary dysplasia in preterm infants. Cochrane Database Syst Rev. 2017;10:CD001145.
  • Doyle LW, Halliday HL, Ehrenkranz RA, et al. Impact of postnatal systemic corticosteroids on mortality and cerebral palsy in preterm infants: effect modification by risk for chronic lung disease. Pediatrics. 2005;115:655–661. doi:10.1542/peds.2004-1238
  • Yoder BA, Harrison M, Clark RH. Time-related changes in steroid use and bronchopulmonary dysplasia in preterm infants. Pediatrics. 2009;124(2):673–679. doi:10.1542/peds.2008-2793
  • Laughon M, Bose C, Moya F, et al. A pilot randomized, controlled trial of later treatment with a peptide-containing, synthetic surfactant for the prevention of bronchopulmonary dysplasia. Pediatrics. 2009;123:89–96. doi:10.1542/peds.2007-2680
  • Merrill JD, Ballard RA, Cnaan A, et al. Dysfunction of pulmonary surfactant in chronically ventilated premature infants. Pediatr Res. 2004;56:918–926. doi:10.1203/01.PDR.0000145565.45490.D9
  • Clark RH, Gerstmann DR, Jobe AH, Moffitt ST, Slutsky AS, Yoder BA. Lung injury in neonates: causes, strategies for prevention, and long-term consequences. J Pediatr. 2001;139(4):478–486. doi:10.1067/mpd.2001.118201
  • Frank L, Sosenko IR. Undernutrition as a major contributing factor in the pathogenesis of bronchopulmonary dysplasia. Am Rev Respir Dis. 1988;138:725–729. doi:10.1164/ajrccm/138.3.725
  • Spiegler J, Preuß M, Gebauer C, Bendiks M, Herting E, Göpel W; German Neonatal Network. Does breastmilk influence the development of bronchopulmonary dysplasia? J Pediatr. 2016;169:76–80. doi:10.1016/j.jpeds.2015.10.080
  • Hair AB, Peluso AM, Hawthorne KM, et al. Beyond necrotizing enterocolitis prevention: improving outcomes with an exclusive human milk-based diet. Breastfeed Med. 2016;11(2):70–74. doi:10.1089/bfm.2015.0134
  • Smyth JA, Tabachnik E, Duncan WJ, et al. Pulmonary function and bronchial hyperreactivity in long-term survivors of bronchopulmonary dysplasia. Pediatrics. 1981;68(3):336–340.
  • Harrod JR, L’Heureux P, Wangensteen OD, et al. Long-term follow-up severe respiratory distress syndrome treated with IPPB. J Pediatr. 1974;84:277.
  • Bhatt-Mehta V, Donn Steven M. Sildenafil for pulmonary hypertension complicating bronchopulmonary dysplasia. Clin Pharmacol. 2014;7(4):393–395.
  • Henner N, Davis JM. Etiology and pathogenesis. In: Donn SM, Sinha SK, editors. Manual of Neonatal Respiratory Care. 3rd ed. New York: Springer Science+Business Media; 2012:625–631.
  • Lagatta JM, Hysinger EB, Zaniletti I, et al. The impact of pulmonary hypertension in preterm infants with severe bronchopulmonary dysplasia through 1 year. J Pediatr. 2018;203:218–224.
  • Mourani PM, Abman SH. Pulmonary vascular disease in bronchopulmonary dysplasia: pulmonary hypertension and beyond. Curr Opin Pediatr. 2013;25:329–337.
  • An HS, Bae EJ, Kim GB, et al. Pulmonary hypertension in preterm infants with bronchopulmonary dysplasia. Korean Circ J. 2010;40:131–136.
  • Bhat R, Salas AA, Foster C, Carlo WA, Ambalavanan N. Prospective analysis of pulmonary hypertension in extremely low birth weight infants. Pediatrics. 2012;129:682–689.
  • Bui CB, Pang MA, Sehgal A, et al. Pulmonary hypertension associated with bronchopulmonary dysplasia in preterm infants. J Reprod Immunol. 2017;124:21–29.
  • Porta NF, Steinhorn RH. Pulmonary vasodilator therapy in the NICU: inhaled nitric oxide, sildenafil and other pulmonary vasodilating agents. Clin Perinatol. 2012;39(1):149–164.
  • Vermont Oxford Network. NICU by the Numbers. Nearly One in Five 22–29 Week Infants Requires Respiratory Support to Transition Home. Edwards E, Editor; June 2020:10
  • DeMauro SB, Jensen EA, Bann CM, et al. Home oxygen and 2-year outcomes of preterm infants with bronchopulmonary dysplasia. Pediatrics. 2019;143(5):e20182956akan.
  • Cristea AI, Carrol AE, Davis SD, et al. Outcomes of children with severe bronchopulmonary dysplasia who were ventilator dependent at home. Pediatrics. 2013;132(3):e727–e734.
  • Mandy G, Malkar M, Welty SE, et al. Tracheostomy placement in infants with bronchopulmonary dysplasia: safety and outcomes. Pediatr Pumonol. 2013;48(3):245–249.
  • Gien J, Kinsella J, Thrasher J, et al. Retrospective analysis of an interdisciplinary ventilator care program intervention on survival of infants with ventilator-dependent bronchopulmonary dysplasia. Am J Perinatol. 2017;34:155–163.
  • Carraro S, Filippone M, Da Dalt L, et al. Bronchopulmonary dysplasia: the earliest and perhaps the longest lasting obstructive lung disease in humans. Early Hum Dev. 2013;89(Suppl 3):S3–S5.
  • Committee on Infectious Diseases and Bronchiolitis Guidelines Committee. Updated guidance for palivizumab prophylaxis among infants and young children at increased risk of hospitalization for respiratory syncytial virus infection. Pediatrics. 2014;134(2):415–420.