356
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Updated Perspectives on the Diagnosis and Management of Neonatal Invasive Candidiasis

ORCID Icon, , &
Pages 45-63 | Received 14 Aug 2023, Accepted 25 Oct 2023, Published online: 09 Nov 2023

References

  • Arsenault AB, Bliss JM. Neonatal candidiasis: new insights into an old problem at a unique host-pathogen interface. Curr Fungal Infect Rep. 2015;9(4):246–252. doi:10.1007/s12281-015-0238-x
  • Rowen JL. Mucocutaneous candidiasis. Semin Perinatol. 2003;27(5):406–413. doi:10.1016/s0146-0005(03)00066-1
  • Benjamin DK, Stoll BJ, Gantz MG, et al. Neonatal candidiasis: epidemiology, risk factors, and clinical judgment. Pediatrics. 2010;126(4):e865–73. doi:10.1542/peds.2009-3412
  • Kilpatrick R, Scarrow E, Hornik C, Greenberg RG. Neonatal invasive candidiasis: updates on clinical management and prevention. Lancet Child Adolesc Health. 2022;6(1):60–70. doi:10.1016/s2352-4642(21)00272-8
  • Filippidi A, Galanakis E, Maraki S, et al. The effect of maternal flora on Candida colonisation in the neonate. Mycoses. 2014;57(1):43–48. doi:10.1111/myc.12100
  • Al-Rusan RM, Darwazeh AMG, Lataifeh IM. The relationship of Candida colonization of the oral and vaginal mucosae of mothers and oral mucosae of their newborns at birth. Oral Surg Oral Med Oral Pathol Oral Radiol. 2017;123(4):459–463. doi:10.1016/j.oooo.2017.01.003
  • Pappas PG, Kauffman CA, Andes DR, et al. Clinical practice guideline for the management of candidiasis: 2016 update by the infectious diseases Society of America. Clin Infect Dis. 2015;62(4):e1–e50. doi:10.1093/cid/civ933
  • Kelly MS, Benjamin DK, Smith PB. The epidemiology and diagnosis of invasive candidiasis among premature infants. Clin Perinatol. 2015;42(1):105–17, viii–ix. doi:10.1016/j.clp.2014.10.008
  • Vasileiou E, Apsemidou A, Vyzantiadis TA, Tragiannidis A. Invasive candidiasis and candidemia in pediatric and neonatal patients: a review of current guidelines. Curr Med Mycol. 2018;4(3):28–33. doi:10.18502/cmm.4.3.173
  • Alvarado-Socarras JL, Vargas-Soler JA, Franco-Paredes C, Villegas-Lamus KC, Rojas-Torres JP, Rodriguez-Morales AJ. A cluster of neonatal infections caused by Candida auris at a large referral center in Colombia. J Pediatric Infect Dis Soc. 2021;10(5):549–555. doi:10.1093/jpids/piaa152
  • Kaur H, Chakrabarti A. Strategies to reduce mortality in adult and neonatal candidemia in developing countries. J Fungi. 2017;3(3):41. doi:10.3390/jof3030041
  • Benjamin DK, Stoll BJ, Fanaroff AA, et al. Neonatal candidiasis among extremely low birth weight infants: risk factors, mortality rates, and neurodevelopmental outcomes at 18 to 22 months. Pediatrics. 2006;117(1):84–92. doi:10.1542/peds.2004-2292
  • Cotten CM, McDonald S, Stoll B, Goldberg RN, Poole K, Benjamin DK. The association of third-generation cephalosporin use and invasive candidiasis in extremely low birth-weight infants. Pediatrics. 2006;118(2):717–722. doi:10.1542/peds.2005-2677
  • Cole GT, Halawa AA, Anaissie EJ. The role of the gastrointestinal tract in hematogenous candidiasis: from the laboratory to the bedside. Clin Infect Dis. 1996;22 Suppl 2(Supplement_2):S73–88. doi:10.1093/clinids/22.supplement_2.s73
  • Cook A, Ferreras-Antolin L, Adhisivam B, et al. Neonatal invasive candidiasis in low- and middle-income countries: data from the NeoOBS study. Med Mycol. 2023;61(3). doi:10.1093/mmy/myad010
  • Aliaga S, Clark RH, Laughon M, et al. Changes in the incidence of candidiasis in neonatal intensive care units. Pediatrics. 2014;133(2):236–242. doi:10.1542/peds.2013-0671
  • Centers for Disease Control and Prevention. Invasive Candidiasis statistics; [ updated January 13, 2023]. Available from: https://www.cdc.gov/fungal/diseases/candidiasis/invasive/statistics.html. Accessed September 28, 2023.
  • Scamardo MS, Dolce P, Esposito EP, Raimondi F, Triassi M, Zarrilli R. Trends, risk factors and outcomes of healthcare-associated infections in a neonatal intensive care unit in Italy during 2013–2017. Ital J Pediatr. 2020;46(1):34. doi:10.1186/s13052-020-0799-3
  • Oeser C, Vergnano S, Naidoo R, et al. Neonatal invasive fungal infection in England 2004–2010. Clin Microbiol Infect. 2014;20(9):936–941. doi:10.1111/1469-0691.12578
  • Ting JY, Roberts A, Synnes A, et al. Invasive fungal infections in neonates in Canada: epidemiology and outcomes. Pediatr Infect Dis J. 2018;37(11):1154–1159. doi:10.1097/inf.0000000000001968
  • Howell A, Isaacs D, Halliday R. Oral nystatin prophylaxis and neonatal fungal infections. Arch Dis Child Fetal Neonatal Ed. 2009;94(6):F429–33. doi:10.1136/adc.2008.157123
  • Stoll BJ, Hansen NI, Adams-Chapman I, et al. Neurodevelopmental and growth impairment among extremely low-birth-weight infants with neonatal infection. JAMA. 2004;292(19):2357–2365. doi:10.1001/jama.292.19.2357
  • Greenberg RG, Benjamin DK, Gantz MG, et al. Empiric antifungal therapy and outcomes in extremely low birth weight infants with invasive candidiasis. J Pediatr. 2012;161(2):264–9.e2. doi:10.1016/j.jpeds.2012.01.053
  • Cahan H, Deville JG. Outcomes of neonatal candidiasis: the impact of delayed initiation of antifungal therapy. Int J Pediatr. 2011;2011:813871. doi:10.1155/2011/813871
  • Calley JL, Warris A. Recognition and diagnosis of invasive fungal infections in neonates. J Infect. 2017;74(Suppl 1):S108–s113. doi:10.1016/s0163-4453(17)30200-1
  • Walsh TJ, Katragkou A, Chen T, Salvatore CM, Roilides E. Invasive Candidiasis in infants and children: recent advances in epidemiology, diagnosis, and treatment. J Fungi. 2019;5(1):11. doi:10.3390/jof5010011
  • Benjamin DK, Poole C, Steinbach WJ, Rowen JL, Walsh TJ. Neonatal candidemia and end-organ damage: a critical appraisal of the literature using meta-analytic techniques. Pediatrics. 2003;112(3 Pt 1):634–640. doi:10.1542/peds.112.3.634
  • Lingappan A, Wykoff CC, Albini TA, et al. Endogenous fungal endophthalmitis: causative organisms, management strategies, and visual acuity outcomes. Am J Ophthalmol. 2012;153(1):162–6.e1. doi:10.1016/j.ajo.2011.06.020
  • Alhamoud MA, Alnosair GH, Alhashim HY. Neonatal endogenous endophthalmitis: a case report. Cureus. 2022;14(2):e22256. doi:10.7759/cureus.22256
  • Ferrando G, Castagnola E. Prophylaxis of invasive fungal infection in neonates: a narrative review for practical purposes. J Fungi. 2023;9(2):164. doi:10.3390/jof9020164
  • Goudjil S, Kongolo G, Dusol L, et al. (1-3)-β-D-glucan levels in candidiasis infections in the critically ill neonate. J Matern Fetal Neonatal Med. 2013;26(1):44–48. doi:10.3109/14767058.2012.722716
  • Horvath LL, Hospenthal DR, Murray CK, Dooley DP. Detection of simulated candidemia by the BACTEC 9240 system with plus aerobic/F and anaerobic/F blood culture bottles. J Clin Microbiol. 2003;41(10):4714–4717. doi:10.1128/jcm.41.10.4714-4717.2003
  • Horvath LL, George BJ, Murray CK, Harrison LS, Hospenthal DR. Direct comparison of the BACTEC 9240 and BacT/ALERT 3D automated blood culture systems for candida growth detection. J Clin Microbiol. 2004;42(1):115–118. doi:10.1128/jcm.42.1.115-118.2004
  • Telenti A, Roberts GD. Fungal blood cultures. Eur J Clin Microbiol Infect Dis. 1989;8(9):825–831. doi:10.1007/bf02185855
  • McDonald LC, Weinstein MP, Fune J, Mirrett S, Reimer LG, Reller LB. Controlled comparison of BacT/ALERT FAN aerobic medium and BATEC fungal blood culture medium for detection of fungemia. J Clin Microbiol. 2001;39(2):622–624. doi:10.1128/jcm.39.2.622-624.2001
  • Bersani I, Piersigilli F, Goffredo BM, et al. Antifungal drugs for invasive Candida Infections (ICI) in neonates: future perspectives. Front Pediatr. 2019;7:375. doi:10.3389/fped.2019.00375
  • Keighley C, Cooley L, Morris AJ, et al. Consensus guidelines for the diagnosis and management of invasive candidiasis in haematology, oncology and intensive care settings, 2021. Intern Med J. 2021;51(Suppl 7):89–117. doi:10.1111/imj.15589
  • Simor AE, Porter V, Mubareka S, et al. Rapid identification of Candida species from positive blood cultures by use of the FilmArray blood culture identification panel. J Clin Microbiol. 2018;56(12). doi:10.1128/JCM.01387-18
  • Schelonka RL, Moser SA. Time to positive culture results in neonatal Candida septicemia. J Pediatr. 2003;142(5):564–565. doi:10.1067/mpd.2003.188
  • Clancy CJ, Nguyen MH. Finding the “missing 50%” of invasive candidiasis: how nonculture diagnostics will improve understanding of disease spectrum and transform patient care. Clin Infect Dis. 2013;56(9):1284–1292. doi:10.1093/cid/cit006
  • Oliveri S, Trovato L, Betta P, Romeo MG, Nicoletti G. Experience with the Platelia Candida ELISA for the diagnosis of invasive candidosis in neonatal patients. Clin Microbiol Infect. 2008;14(4):391–393. doi:10.1111/j.1469-0691.2007.01938.x
  • Lucignano B, Cento V, Agosta M, et al. Effective rapid diagnosis of bacterial and fungal bloodstream infections by T2 magnetic resonance technology in the pediatric population. J Clin Microbiol. 2022;60(10):e0029222. doi:10.1128/jcm.00292-22
  • Mylonakis E, Clancy CJ, Ostrosky-Zeichner L, et al. T2 magnetic resonance assay for the rapid diagnosis of candidemia in whole blood: a clinical trial. Clin Infect Dis. 2015;60(6):892–899. doi:10.1093/cid/ciu959
  • Ramos JT, Villar S, Bouza E, et al. Performance of a quantitative PCR-based assay and Beta-d-glucan detection for diagnosis of invasive Candidiasis in Very-Low-Birth-Weight Preterm Neonatal Patients (CANDINEO Study). J Clin Microbiol. 2017;55(9):2752–2764. doi:10.1128/JCM.00496-17
  • George BJ, Horvath LL, Hospenthal DR. Effect of inoculum size on detection of Candida growth by the BACTEC 9240 automated blood culture system using aerobic and anaerobic media. J Clin Microbiol. 2005;43(1):433–435. doi:10.1128/jcm.43.1.433-435.2005
  • Cohen-Wolkowiez M, Smith PB, Mangum B, et al. Neonatal Candida meningitis: significance of cerebrospinal fluid parameters and blood cultures. J Perinatol. 2007;27(2):97–100. doi:10.1038/sj.jp.7211628
  • Berenguer J, Buck M, Witebsky F, Stock F, Pizzo PA, Walsh TJ. Lysis-centrifugation blood cultures in the detection of tissue-proven invasive candidiasis. Disseminated versus single-organ infection. Diagn Microbiol Infect Dis. 1993;17(2):103–109. doi:10.1016/0732-8893(93)90020-8
  • Johnson MD, Lewis RE, Dodds Ashley ES, et al. Core recommendations for antifungal Stewardship: a statement of the mycoses study group education and research consortium. J Infect Dis. 2020;222(Suppl 3):S175–s198. doi:10.1093/infdis/jiaa394
  • Huber S, Hetzer B, Crazzolara R, Orth-Höller D. The correct blood volume for paediatric blood cultures: a conundrum? Clin Microbiol Infect. 2020;26(2):168–173. doi:10.1016/j.cmi.2019.10.006
  • Sundararajan S. Ideal blood inoculant volume for neonatal sepsis evaluation: an alternative approach. Pediatr Res. 2021;90(5):930–933. doi:10.1038/s41390-021-01720-2
  • Miller JM, Binnicker MJ, Campbell S, et al. A guide to utilization of the microbiology laboratory for diagnosis of infectious diseases: 2018 update by the infectious diseases society of America and the American Society for Microbiology. Clin Infect Dis. 2018;67(6):e1–e94. doi:10.1093/cid/ciy381
  • Howie SR. Blood sample volumes in child health research: review of safe limits. Bull World Health Organ. 2011;89(1):46–53. doi:10.2471/blt.10.080010
  • Lancaster DP, Friedman DF, Chiotos K, Sullivan KV, Carroll KC. Blood volume required for detection of low levels and ultralow levels of organisms responsible for neonatal bacteremia by use of Bactec Peds Plus/F, Plus Aerobic/F Medium, and the BD Bactec FX system: an in vitro study. J Clin Microbiol. 2015;53(11):3609–3613. doi:10.1128/jcm.01706-15
  • Harewood FC, Curtis N, Daley AJ, Bryant PA, Gwee A, Connell TG. Adequate or inadequate? The volume of blood submitted for blood culture at a tertiary children’s hospital. Clin Pediatr. 2018;57(11):1310–1317. doi:10.1177/0009922818778042
  • Ruhnke M, Rickerts V, Cornely OA, et al. Diagnosis and therapy of Candida infections: joint recommendations of the German speaking mycological society and the Paul-Ehrlich-Society for chemotherapy. Mycoses. 2011;54(4):279–310. doi:10.1111/j.1439-0507.2011.02040.x
  • Dulanto-Reinoso CM, Martinez-Castellanos MA. Detection of Candida endophthalmitis in a newborn using handheld spectral-domain optical coherence tomography. Case Rep Ophthalmol. 2018;9(3):439–443. doi:10.1159/000493679
  • Zhao D, Qiu G, Luo Z, Zhang Y, Simeoni U. Platelet parameters and (1, 3)-β-D-glucan as a diagnostic and prognostic marker of invasive fungal disease in preterm infants. PLoS One. 2015;10(4):e0123907. doi:10.1371/journal.pone.0123907
  • Manzoni P, Mostert M, Galletto P, et al. Is thrombocytopenia suggestive of organism-specific response in neonatal sepsis? Pediatr Int. 2009;51(2):206–210. doi:10.1111/j.1442-200X.2008.02689.x
  • Guida JD, Kunig AM, Leef KH, McKenzie SE, Paul DA. Platelet count and sepsis in very low birth weight neonates: is there an organism-specific response? Pediatrics. 2003;111(6 Pt 1):1411–1415. doi:10.1542/peds.111.6.1411
  • Benjamin DK, DeLong ER, Steinbach WJ, Cotton CM, Walsh TJ, Clark RH. Empirical therapy for neonatal candidemia in very low birth weight infants. Pediatrics. 2003;112(3 Pt 1):543–547. doi:10.1542/peds.112.3.543
  • Makhoul IR, Kassis I, Smolkin T, Tamir A, Sujov P. Review of 49 neonates with acquired fungal sepsis: further characterization. Pediatrics. 2001;107(1):61–66. doi:10.1542/peds.107.1.61
  • Cohen JF, Ouziel A, Matczak S, et al. Diagnostic accuracy of serum (1,3)-beta-d-glucan for neonatal invasive candidiasis: systematic review and meta-analysis. Clin Microbiol Infect. 2020;26(3):291–298. doi:10.1016/j.cmi.2019.09.010
  • Smith PB, Benjamin DK, Alexander BD, Johnson MD, Finkelman MA, Steinbach WJ. Quantification of 1,3-beta-D-glucan levels in children: preliminary data for diagnostic use of the beta-glucan assay in a pediatric setting. Clin Vaccine Immunol. 2007;14(7):924–925. doi:10.1128/cvi.00025-07
  • Lamoth F, Cruciani M, Mengoli C, et al. β-Glucan antigenemia assay for the diagnosis of invasive fungal infections in patients with hematological malignancies: a systematic review and meta-analysis of cohort studies from the Third European Conference on Infections in Leukemia (ECIL-3). Clin Infect Dis. 2012;54(5):633–643. doi:10.1093/cid/cir897
  • Digby J, Kalbfleisch J, Glenn A, Larsen A, Browder W, Williams D. Serum glucan levels are not specific for presence of fungal infections in intensive care unit patients. Clin Diagn Lab Immunol. 2003;10(5):882–885. doi:10.1128/cdli.10.5.882-885.2003
  • Racil Z, Kocmanova I, Lengerova M, et al. Difficulties in using 1,3-{beta}-D-glucan as the screening test for the early diagnosis of invasive fungal infections in patients with haematological malignancies--high frequency of false-positive results and their analysis. J Med Microbiol. 2010;59(Pt9):1016–1022. doi:10.1099/jmm.0.019299-0
  • Prattes J, Schilcher G, Krause R. Reliability of serum 1,3-beta-D-glucan assay in patients undergoing renal replacement therapy: a review of the literature. Mycoses. 2015;58(1):4–9. doi:10.1111/myc.12267
  • Wheat LJ. Approach to the diagnosis of invasive aspergillosis and candidiasis. Clin Chest Med. 2009;30(2):367–77, viii. doi:10.1016/j.ccm.2009.02.012
  • Cendejas-Bueno E, Falces-Romero I, Laplaza-González M, et al. Candidemia diagnosis with T2 nuclear magnetic resonance in a PICU: a new approach. Pediatr Crit Care Med. 2021;22(2):e109–e114. doi:10.1097/pcc.0000000000002548
  • Mylonakis E, Zacharioudakis IM, Clancy CJ, Nguyen MH, Pappas PG, Warnock DW. Efficacy of T2 magnetic resonance assay in monitoring Candidemia after initiation of antifungal therapy: the Serial Therapeutic and Antifungal Monitoring Protocol (STAMP) trial. J Clin Microbiol. 2018;56(4). doi:10.1128/JCM.01756-17
  • Clancy CJ, Pappas PG, Vazquez J, et al. Detecting infections rapidly and easily for candidemia trial, part 2 (DIRECT2): a prospective, multicenter study of the T2Candida panel. Clin Infect Dis. 2018;66(11):1678–1686. doi:10.1093/cid/cix1095
  • Tan KE, Ellis BC, Lee R, Stamper PD, Zhang SX, Carroll KC. Prospective evaluation of a matrix-assisted laser desorption ionization-time of flight mass spectrometry system in a hospital clinical microbiology laboratory for identification of bacteria and yeasts: a bench-by-bench study for assessing the impact on time to identification and cost-effectiveness. J Clin Microbiol. 2012;50(10):3301–3308. doi:10.1128/jcm.01405-12
  • Sow D, Fall B, Ndiaye M, et al. Usefulness of MALDI-TOF mass spectrometry for routine identification of Candida Species in a resource-poor setting. Mycopathologia. 2015;180(3–4):173–179. doi:10.1007/s11046-015-9905-2
  • Balows A. Manual of clinical microbiology 8th edition: p. R. Murray, E. J. Baron, J. H. Jorgenson, M. A. Pfaller, and R. H. Yolken, eds., ASM Press, 2003, 2113 pages, 2 vol, 2003 + subject & author indices, ISBN: 1-555810255-4, US$ 189.95. Book Reviews. Diagn Microbiol Infect Dis. 2003;47(4):625–626. doi:10.1016/S0732-8893(03)00160-3
  • Fernandez J, Erstad BL, Petty W, Nix DE. Time to positive culture and identification for Candida blood stream infections. Diagn Microbiol Infect Dis. 2009;64(4):402–407. doi:10.1016/j.diagmicrobio.2009.04.002
  • Spanu T, Posteraro B, Fiori B, et al. Direct maldi-tof mass spectrometry assay of blood culture broths for rapid identification of Candida species causing bloodstream infections: an observational study in two large microbiology laboratories. J Clin Microbiol. 2012;50(1):176–179. doi:10.1128/jcm.05742-11
  • Huang AM, Newton D, Kunapuli A, et al. Impact of rapid organism identification via matrix-assisted laser desorption/ionization time-of-flight combined with antimicrobial stewardship team intervention in adult patients with bacteremia and candidemia. Clin Infect Dis. 2013;57(9):1237–1245. doi:10.1093/cid/cit498
  • Harris DM, Hata DJ. Rapid identification of bacteria and Candida using PNA-FISH from blood and peritoneal fluid cultures: a retrospective clinical study. Ann Clin Microbiol Antimicrob. 2013;12(1):2. doi:10.1186/1476-0711-12-2
  • Klingspor L, Lindbäck E, Ullberg M, Özenci V. Seven years of clinical experience with the Yeast Traffic Light PNA FISH: assay performance and possible implications on antifungal therapy. Mycoses. 2018;61(3):179–185. doi:10.1111/myc.12722
  • Lau A, Halliday C, Chen SC, Playford EG, Stanley K, Sorrell TC. Comparison of whole blood, serum, and plasma for early detection of candidemia by multiplex-tandem PCR. J Clin Microbiol. 2010;48(3):811–816. doi:10.1128/jcm.01650-09
  • Aittakorpi A, Kuusela P, Koukila-Kähkölä P, et al. Accurate and rapid identification of Candida spp. frequently associated with fungemia by using PCR and the microarray-based prove-it sepsis assay. J Clin Microbiol. 2012;50(11):3635–3640. doi:10.1128/jcm.01461-12
  • Kidd SE, Chen SC, Meyer W, Halliday CL. A new age in molecular diagnostics for invasive fungal disease: are we ready? Front Microbiol. 2019;10:2903. doi:10.3389/fmicb.2019.02903
  • He B, Yang Q. Updates in laboratory identification of invasive fungal infection in neonates. Microorganisms. 2023;11(4):1001.
  • Yang Q, He B, Chen C, et al. A rapid, visible, and highly sensitive method for recognizing and distinguishing invasive fungal infections via CCP-FRET technology. ACS Infect Dis. 2021;7(10):2816–2825. doi:10.1021/acsinfecdis.1c00393
  • Graff K, Dominguez SR, Messacar K. Metagenomic next-generation sequencing for diagnosis of pediatric meningitis and encephalitis: a review. J Pediatric Infect Dis Soc. 2021;10(Supplement_4):S78–s87. doi:10.1093/jpids/piab067
  • Okumura T, Horiba K, Tetsuka N, et al. Next-generation sequencing-based detection of Ureaplasma in the gastric fluid of neonates with respiratory distress and chorioamnionitis. J Matern Fetal Neonatal Med. 2023;36(1):2207113. doi:10.1080/14767058.2023.2207113
  • Agudelo-Pérez S, Fernández-Sarmiento J, Rivera León D, Peláez RG. Metagenomics by next-generation sequencing (mNGS) in the etiological characterization of neonatal and pediatric sepsis: a systematic review. Front Pediatr. 2023;11:1011723. doi:10.3389/fped.2023.1011723
  • Hill JA, Dalai SC, Hong DK, et al. Liquid Biopsy for invasive mold infections in hematopoietic cell transplant recipients with pneumonia through next-generation sequencing of microbial cell-free DNA in plasma. Clin Infect Dis. 2021;73(11):e3876–e3883. doi:10.1093/cid/ciaa1639
  • Heldman MR, Ahmed AA, Liu W, et al. Serial quantitation of plasma microbial cell-free DNA before and after diagnosis of pulmonary invasive mold infections in hematopoietic cell transplant recipients. J Infect Dis. 2023. doi:10.1093/infdis/jiad255
  • Autmizguine J, Guptill JT, Cohen-Wolkowiez M, Benjamin DK, Capparelli EV. Pharmacokinetics and pharmacodynamics of antifungals in children: clinical implications. Drugs. 2014;74(8):891–909. doi:10.1007/s40265-014-0227-3
  • Hope WW, Castagnola E, Groll AH, et al. ESCMID* guideline for the diagnosis and management of Candida diseases 2012: prevention and management of invasive infections in neonates and children caused by Candida spp. Clin Microbiol Infect. 2012;18(Suppl 7):38–52. doi:10.1111/1469-0691.12040
  • Wade KC, Wu D, Kaufman DA, et al. Population pharmacokinetics of fluconazole in young infants. Antimicrob Agents Chemother. 2008;52(11):4043–4049. doi:10.1128/aac.00569-08
  • Watt K, Benjamin DK, Cohen-Wolkowiez M. Pharmacokinetics of antifungal agents in children. Early Hum Dev. 2011;87(Suppl 1):S61–5. doi:10.1016/j.earlhumdev.2011.01.014
  • Piper L, Smith PB, Hornik CP, et al. Fluconazole loading dose pharmacokinetics and safety in infants. Pediatr Infect Dis J. 2011;30(5):375–378. doi:10.1097/INF.0b013e318202cbb3
  • Pammi M. Treatment of Candida Infection in Neonates. Post T, editor. UpToDate; 2023.
  • Bellmann R, Smuszkiewicz P. Pharmacokinetics of antifungal drugs: practical implications for optimized treatment of patients. Infection. 2017;45(6):737–779. doi:10.1007/s15010-017-1042-z
  • Clancy CJ, Nguyen MH. Emergence of Candida auris: an international call to arms. Clin Infect Dis. 2017;64(2):141–143. doi:10.1093/cid/ciw696
  • Fairuz S, Nair RS, Billa N. Orally administered amphotericin B nanoformulations: physical properties of nanoparticle carriers on bioavailability and clinical relevance. Pharmaceutics. 2022;14(9):1823. doi:10.3390/pharmaceutics14091823
  • Bekersky I, Fielding RM, Dressler DE, Lee JW, Buell DN, Walsh TJ. Pharmacokinetics, excretion, and mass balance of liposomal amphotericin B (AmBisome) and amphotericin B deoxycholate in humans. Antimicrob Agents Chemother. 2002;46(3):828–833. doi:10.1128/aac.46.3.828-833.2002
  • Baley JE, Meyers C, Kliegman RM, Jacobs MR, Blumer JL. Pharmacokinetics, outcome of treatment, and toxic effects of amphotericin B and 5-fluorocytosine in neonates. J Pediatr. 1990;116(5):791–797. doi:10.1016/s0022-3476(05)82674-5
  • Benson JM, Nahata MC. Pharmacokinetics of amphotericin B in children. Antimicrob Agents Chemother. 1989;33(11):1989–1993. doi:10.1128/aac.33.11.1989
  • Koren G, Lau A, Klein J, et al. Pharmacokinetics and adverse effects of amphotericin B in infants and children. J Pediatr. 1988;113(3):559–563. doi:10.1016/s0022-3476(88)80653-x
  • Nath CE, McLachlan AJ, Shaw PJ, Gunning R, Earl JW. Population pharmacokinetics of amphotericin B in children with malignant diseases. Br J Clin Pharmacol. 2001;52(6):671–680. doi:10.1046/j.0306-5251.2001.01496.x
  • Starke JR, Mason EO, Kramer WG, Kaplan SL. Pharmacokinetics of amphotericin B in infants and children. J Infect Dis. 1987;155(4):766–774. doi:10.1093/infdis/155.4.766
  • Lestner JM, Smith PB, Cohen-Wolkowiez M, Benjamin DK, Hope WW. Antifungal agents and therapy for infants and children with invasive fungal infections: a pharmacological perspective. Br J Clin Pharmacol. 2013;75(6):1381–1395. doi:10.1111/bcp.12025
  • Andrew EC, Curtis N, Coghlan B, Cranswick N, Gwee A. Adverse effects of amphotericin B in children; a retrospective comparison of conventional and liposomal formulations. Br J Clin Pharmacol. 2018;84(5):1006–1012. doi:10.1111/bcp.13521
  • Butler KM, Rench MA, Baker CJ. Amphotericin B as a single agent in the treatment of systemic candidiasis in neonates. Pediatr Infect Dis J. 1990;9(1):51–56. doi:10.1097/00006454-199001000-00012
  • Linder N, Klinger G, Shalit I, et al. Treatment of candidaemia in premature infants: comparison of three amphotericin B preparations. J Antimicrob Chemother. 2003;52(4):663–667. doi:10.1093/jac/dkg419
  • Le J, Adler-Shohet FC, Nguyen C, Lieberman JM. Nephrotoxicity associated with amphotericin B deoxycholate in neonates. Pediatr Infect Dis J. 2009;28(12):1061–1063. doi:10.1097/INF.0b013e3181af6201
  • Holler B, Omar SA, Farid MD, Patterson MJ. Effects of fluid and electrolyte management on amphotericin B-induced nephrotoxicity among extremely low birth weight infants. Pediatrics. 2004;113(6):e608–16. doi:10.1542/peds.113.6.e608
  • Jacobs SE, Zagaliotis P, Walsh TJ. Novel antifungal agents in clinical trials. F1000Res. 2021;10:507. doi:10.12688/f1000research.28327.2
  • Hornik CD, Bondi DS, Greene NM, Cober MP, John B. Review of fluconazole treatment and prophylaxis for invasive candidiasis in neonates. J Pediatr Pharmacol Ther. 2021;26(2):115–122. doi:10.5863/1551-6776-26.2.115
  • Chen S, Sun KY, Feng XW, Ran X, Lama J, Ran YP. Efficacy and safety of itraconazole use in infants. World J Pediatr. 2016;12(4):399–407. doi:10.1007/s12519-016-0034-x
  • Mondal RK, Singhi SC, Chakrabarti A, J M. Randomized comparison between fluconazole and itraconazole for the treatment of candidemia in a pediatric intensive care unit: a preliminary study. Pediatr Crit Care Med. 2004;5(6):561–565. doi:10.1097/01.Pcc.0000144712.29127.81
  • Zimmermann T, Yeates RA, Laufen H, Pfaff G, Wildfeuer A. Influence of concomitant food intake on the oral absorption of two triazole antifungal agents, itraconazole and fluconazole. Eur J Clin Pharmacol. 1994;46(2):147–150. doi:10.1007/bf00199879
  • Watt K, Manzoni P, Cohen-Wolkowiez M, et al. Triazole use in the nursery: fluconazole, voriconazole, posaconazole, and ravuconazole. Curr Drug Metab. 2013;14(2):193–202.
  • Shima H, Miharu M, Osumi T, Takahashi T, Shimada H. Differences in voriconazole trough plasma concentrations per oral dosages between children younger and older than 3 years of age. Pediatr Blood Cancer. 2010;54(7):1050–1052. doi:10.1002/pbc.22451
  • Roberts JK, Stockmann C, Constance JE, et al. Pharmacokinetics and pharmacodynamics of antibacterials, antifungals, and antivirals used most frequently in neonates and infants. Clin Pharmacokinet. 2014;53(7):581–610. doi:10.1007/s40262-014-0147-0
  • Frankenbusch K, Eifinger F, Kribs A, Rengelshauseu J, Roth B. Severe primary cutaneous aspergillosis refractory to amphotericin B and the successful treatment with systemic voriconazole in two premature infants with extremely low birth weight. J Perinatol. 2006;26(8):511–514. doi:10.1038/sj.jp.7211532
  • Muldrew KM, Maples HD, Stowe CD, Jacobs RF. Intravenous voriconazole therapy in a preterm infant. Pharmacotherapy. 2005;25(6):893–898. doi:10.1592/phco.2005.25.6.893
  • Krishnan T, Rishi P. Management of a case of Candida endogenous endophthalmitis in a neonate. Ocul Immunol Inflamm. 2014;22(1):77–78. doi:10.3109/09273948.2013.791923
  • Turner RB, Martello JL, Malhotra A. Worsening renal function in patients with baseline renal impairment treated with intravenous voriconazole: a systematic review. Int J Antimicrob Agents. 2015;46(4):362–366. doi:10.1016/j.ijantimicag.2015.05.023
  • Stemler J, Mellinghoff SC, Khodamoradi Y, et al. Primary prophylaxis of invasive fungal diseases in patients with haematological malignancies: 2022 update of the recommendations of the Infectious Diseases Working Party (AGIHO) of the German Society for Haematology and Medical Oncology (DGHO). J Antimicrob Chemother. 2023;13. doi:10.1093/jac/dkad143
  • Ashbee HR, Barnes RA, Johnson EM, Richardson MD, Gorton R, Hope WW. Therapeutic drug monitoring (TDM) of antifungal agents: guidelines from the British Society for Medical Mycology. J Antimicrob Chemother. 2014;69(5):1162–1176. doi:10.1093/jac/dkt508
  • Treviño-Rangel RJ, González GM, Montoya AM, Rojas OC, Elizondo-Zertuche M, Álvarez-Villalobos NA. Recent antifungal pipeline developments against Candida auris: a systematic review. J Fungi. 2022;8(11):1144. doi:10.3390/jof8111144
  • Wiederhold NP. Pharmacodynamics, mechanisms of action and resistance, and spectrum of activity of new antifungal agents. J Fungi. 2022;8(8):857. doi:10.3390/jof8080857
  • Lyman M, Forsberg K, Reuben J, et al. Notes from the field: transmission of pan-resistant and echinocandin-resistant candida auris in health care facilities - Texas and the district of Columbia, January-April 2021. MMWR Morb Mortal Wkly Rep. 2021;70(29):1022–1023. doi:10.15585/mmwr.mm7029a2
  • Szekely J, Rakchang W, Rattanaphan P, Kositpantawong N. Fluconazole and echinocandin resistance of Candida species in invasive candidiasis at a university hospital during pre-COVID-19 and the COVID-19 outbreak. Epidemiol Infect. 2023;151:e146. doi:10.1017/s0950268823001346
  • Hope WW, Seibel NL, Schwartz CL, et al. Population pharmacokinetics of micafungin in pediatric patients and implications for antifungal dosing. Antimicrob Agents Chemother. 2007;51(10):3714–3719. doi:10.1128/aac.00398-07
  • Hope WW, Mickiene D, Petraitis V, et al. The pharmacokinetics and pharmacodynamics of micafungin in experimental hematogenous Candida meningoencephalitis: implications for echinocandin therapy in neonates. J Infect Dis. 2008;197(1):163–171. doi:10.1086/524063
  • Benjamin DK, Kaufman DA, Hope WW, et al. A Phase 3 study of Micafungin versus Amphotericin B deoxycholate in infants with invasive candidiasis. Pediatr Infect Dis J. 2018;37(10):992–998. doi:10.1097/inf.0000000000001996
  • Queiroz-Telles F, Berezin E, Leverger G, et al. Micafungin versus liposomal amphotericin B for pediatric patients with invasive candidiasis: substudy of a randomized double-blind trial. Pediatr Infect Dis J. 2008;27(9):820–826. doi:10.1097/INF.0b013e31817275e6
  • Arrieta AC, Maddison P, Groll AH. Safety of micafungin in pediatric clinical trials. Pediatr Infect Dis J. 2011;30(6):e97–e102. doi:10.1097/INF.0b013e3182127eaf
  • Walsh TJ, Adamson PC, Seibel NL, et al. Pharmacokinetics, safety, and tolerability of caspofungin in children and adolescents. Antimicrob Agents Chemother. 2005;49(11):4536–4545. doi:10.1128/aac.49.11.4536-4545.2005
  • Cohen-Wolkowiez M, Benjamin DK, Piper L, et al. Safety and pharmacokinetics of multiple-dose anidulafungin in infants and neonates. Clin Pharmacol Ther. 2011;89(5):702–707. doi:10.1038/clpt.2011.26
  • Roilides E, Carlesse F, Tawadrous M, et al. Safety, efficacy and pharmacokinetics of anidulafungin in patients 1 month to <2 years of age with invasive candidiasis, including candidemia. Pediatr Infect Dis J. 2020;39(4):305–309. doi:10.1097/inf.0000000000002568
  • Ham YY, Lewis JS, Thompson GR. Rezafungin: a novel antifungal for the treatment of invasive candidiasis. Future Microbiol. 2021;16(1):27–36. doi:10.2217/fmb-2020-0217
  • Thompson GR, Soriano A, Cornely OA, et al. Rezafungin versus caspofungin for treatment of candidaemia and invasive candidiasis (ReSTORE): a multicentre, double-blind, double-dummy, randomised phase 3 trial. Lancet. 2023;401(10370):49–59. doi:10.1016/s0140-6736(22)02324-8
  • Syed YY. Rezafungin: first approval. Drugs. 2023;83(9):833–840. doi:10.1007/s40265-023-01891-8
  • Sigera LSM, Denning DW. Flucytosine and its clinical usage. Ther Adv Infect Dis. 2023;10:20499361231161387. doi:10.1177/20499361231161387
  • Robati Anaraki M, Nouri-Vaskeh M, Abdoli Oskoei S. Fluconazole prophylaxis against invasive candidiasis in very low and extremely low birth weight preterm neonates: a systematic review and meta-analysis. Clin Exp Pediatr. 2021;64(4):172–179. doi:10.3345/cep.2019.01431
  • Benjamin DK, Hudak ML, Duara S, et al. Effect of fluconazole prophylaxis on candidiasis and mortality in premature infants: a randomized clinical trial. JAMA. 2014;311(17):1742–1749. doi:10.1001/jama.2014.2624
  • Lee J, Kim HS, Shin SH, et al. Efficacy and safety of fluconazole prophylaxis in extremely low birth weight infants: multicenter pre-post cohort study. BMC Pediatr. 2016;16(1):67. doi:10.1186/s12887-016-0605-y
  • Autmizguine J, Smith PB, Prather K, et al. Effect of fluconazole prophylaxis on Candida fluconazole susceptibility in premature infants. J Antimicrob Chemother. 2018;73(12):3482–3487. doi:10.1093/jac/dky353
  • Sims ME, Yoo Y, You H, Salminen C, Walther FJ. Prophylactic oral nystatin and fungal infections in very-low-birthweight infants. Am J Perinatol. 1988;5(1):33–36. doi:10.1055/s-2007-999649
  • Rundjan L, Wahyuningsih R, Oeswadi CA, Marsogi M, Purnamasari A. Oral nystatin prophylaxis to prevent systemic fungal infection in very low birth weight preterm infants: a randomized controlled trial. BMC Pediatr. 2020;20(1):170. doi:10.1186/s12887-020-02074-0
  • Mersal A, Alzahrani I, Azzouz M, et al. Oral nystatin versus intravenous fluconazole as neonatal antifungal prophylaxis: non-inferiority trial. J Clin Neonatol. 2013;2(2):88–92. doi:10.4103/2249-4847.116408
  • Manzoni P, Rinaldi M, Cattani S, et al. Bovine lactoferrin supplementation for prevention of late-onset sepsis in very low-birth-weight neonates: a randomized trial. JAMA. 2009;302(13):1421–1428. doi:10.1001/jama.2009.1403
  • Berrington JE, McGuire W, Embleton ND. ELFIN, the United Kingdom preterm lactoferrin trial: interpretation and future questions (1). Biochem Cell Biol. 2021;99(1):1–6. doi:10.1139/bcb-2020-0073
  • Laforest-Lapointe I, Arrieta MC. Patterns of early-life gut microbial colonization during human immune development: an ecological perspective. Front Immunol. 2017;8:788. doi:10.3389/fimmu.2017.00788
  • Samara J, Moossavi S, Alshaikh B, et al. Supplementation with a probiotic mixture accelerates gut microbiome maturation and reduces intestinal inflammation in extremely preterm infants. Cell Host Microbe. 2022;30(5):696–711.e5. doi:10.1016/j.chom.2022.04.005
  • AlFaleh K, Anabrees J. Probiotics for prevention of necrotizing enterocolitis in preterm infants. Cochrane Database Syst Rev. 2014;4:Cd005496. doi:10.1002/14651858.CD005496.pub4
  • Dermyshi E, Wang Y, Yan C, et al. The “Golden Age” of probiotics: a systematic review and meta-analysis of randomized and observational studies in preterm infants. Neonatology. 2017;112(1):9–23. doi:10.1159/000454668
  • Poindexter B, Cummings J, Hand I. Use of probiotics in preterm infants. Pediatrics. 2021;147(6). doi:10.1542/peds.2021-051485
  • Esaiassen E, Cavanagh P, Hjerde E, Simonsen GS, Støen R, Klingenberg C. Bifidobacterium longum subspecies infantis bacteremia in 3 extremely preterm infants receiving probiotics. Emerg Infect Dis. 2016;22(9):1664–1666. doi:10.3201/eid2209.160033
  • Bertelli C, Pillonel T, Torregrossa A, et al. Bifidobacterium longum bacteremia in preterm infants receiving probiotics. Clin Infect Dis. 2015;60(6):924–927. doi:10.1093/cid/ciu946
  • Roy U, Jessani LG, Rudramurthy SM, et al. Seven cases of Saccharomyces fungaemia related to use of probiotics. Mycoses. 2017;60(6):375–380. doi:10.1111/myc.12604
  • Pillai A, Tan J, Paquette V, Panczuk J. Does probiotic bacteremia in premature infants impact clinically relevant outcomes? A case report and updated review of literature. Clin Nutr ESPEN. 2020;39:255–259. doi:10.1016/j.clnesp.2020.05.020