364
Views
1
CrossRef citations to date
0
Altmetric
Review

Current Status of Simulation Training in Urology: A Non-Systematic Review

ORCID Icon, & ORCID Icon
Pages 111-128 | Published online: 17 Mar 2020

References

  • Sealy W. Halsted is dead: time for change in graduate surgical education. Curr Surg. 1999;56(1–2):34–39. doi:10.1016/S0149-7944(99)00005-7
  • Marron CD, Byrnes CK, Kirk SJ. An EWTD-compliant shift rota decreases training opportunities. Bull R Coll Surg Engl. 2005;87(7):246–248. doi:10.1308/147363505X46880
  • Young M, Kailavasan M, Taylor J, et al. The success and evolution of a urological “boot camp” for newly appointed UK urology registrars: incorporating simulation, nontechnical skills and assessment. J Surg Educ. 2019;76(5):1425–1432. doi:10.1016/j.jsurg.2019.04.00531036524
  • Somani B, Van Cleynenbreugel B, Gozen A, et al. Outcomes of European Basic Laparoscopic Urological Skills (EBLUS) Examinations: results from European School of Urology (ESU) and EAU Section of Uro-Technology (ESUT) over 6 years (2013–2018). Eur Urol Focus. 2019. doi:10.1016/j.euf.2019.01.007
  • Tiong HY, Zhu G, Ong TA, et al. Performance in fundamentals in laparoscopic surgery (FILSTM) reflects global rating scales in objective structured assessment of technical skills (OSATS) for porcine laparoscopic surgery. Int J Urol. 2017;24(Suppl. 1):S45–S46.
  • Campain N, Kailavasan M, Chalwe M, et al. An evaluation of the role of simulation training for teaching surgical skills in Sub-Saharan Africa. World J Surg. 2017;42(4):923–929. doi:10.1007/s00268-017-4261-7
  • Gaba D. The future vision of simulation in health care. Qual Saf Health Care. 2004;13(Suppl 1):S2–S10. doi:10.1136/qshc.2004.009878
  • McGaghie WC, Issenberg SB, Petrusa ER, Scalese R. A critical review of simulation-based medical education research: 2003–2009. Med Educ. 2010;44(1):50–63. doi:10.1111/j.1365-2923.2009.03547.x20078756
  • Maruthappu M, Duclos A, Lipsitz S, Orgill D, Carty M. Surgical learning curves and operative efficiency: a cross-specialty observational study. BMJ Open. 2015;5(3):e006679. doi:10.1136/bmjopen-2014-006679
  • da Cruz J, Dos Reis S, Cunha Frati R, et al. Does warm-up training in a virtual reality simulator improve surgical performance? A prospective randomized analysis. J Surg Educ. 2016;73(6):974–978. doi:10.1016/j.jsurg.2016.04.02027233673
  • Aydin A, Raison N, Khan MS, Dasgupta P, Ahmed K. Simulation-based training and assessment in urological surgery. Nat Rev Urol. 2016;13(9):503–519. doi:10.1038/nrurol.2016.14727549358
  • Kailavasan M, Abdul-Rahman A, Hanchanale V. The validation of the clinical male pelvic trainer Mk 2-advanced models for scrotal examination simulation. J Surg Educ. 2017;74(3):423–430. doi:10.1016/j.jsurg.2016.10.00827825660
  • Edwards S, Cass G, Lenguerrand E, Fox R, Crofts J. Realism and construct validity of novel pelvic models of common gynecologic conditions. Int J Gynaecol Obstet. 2014;124(3):270–273. doi:10.1016/j.ijgo.2013.09.01624373706
  • Abdulmajed MI, Thomas M, Shergill IS. A new training model for adult circumcision. J Surg Educ. 2012;69(4):447–448. doi:10.1016/j.jsurg.2011.12.00422677579
  • Parnham A, Campain N, Biyani CS, Muneer A, Venn S. Validation of a reusable model for simulation training of adult circumcision. Bull R Coll Surg Engl. 2015;97:383–385. doi:10.1308/rcsbull.2015.383
  • Pathak R, Alford S, Igel T. Mp23-07 vasectomy simulation module: didactic, audio-visual, and live-simulation experience. J Urol. 2015;193:e269. doi:10.1016/j.juro.2015.02.1250
  • Shergill IS, Shaikh T, Arya M, Junaid I. A training model for suprapubic catheter insertion: the UroEmerge suprapubic catheter model. Urology. 2008;72(1):196–197. doi:10.1016/j.urology.2008.03.02118513785
  • Singal A, Halverson A, Rooney DM, Davis LM, Kielb SJ. A validated low-cost training model for suprapubic catheter insertion. Urology. 2015;85(1):23–26. doi:10.1016/j.urology.2014.08.02425440817
  • Hossack T, Chris BB, Beer J, Thompson G. A cost-effective, easily reproducible, suprapubic catheter insertion simulation training model. Urology. 2013;82(4):955–958. doi:10.1016/j.urology.2013.06.01323915517
  • Palvolgyi R, Lee A, Ramirez F, et al. VesEcho Training System: suprapubic catheterization under ultrasound guidance. Urol Pract. 2018;5(1):63–68. doi:10.1016/j.urpr.2017.01.003
  • Nonde J, Adam A, Laher AE. Validation of a low cost, disposable, and ultrasound-guided suprapubic catheter insertion trainer. Urology. 2018;115:45–50. doi:10.1016/j.urology.2018.02.01329499259
  • Dai JC, Ahn JS, Cannon ST. Acute ischemic priapism management: an educational and simulation curriculum. MedEdPORTAL. 2018;14:1073. doi:10.15766/mep_2374-8265.10731
  • Ahmed K, Aydin A, Dasgupta P, Khan MS, McCabe JE. A novel cadaveric simulation program in urology. J Surg Educ. 2015;72(4):556–565. doi:10.1016/j.jsurg.2015.01.00525683152
  • Cabello R, González C, Quicios C, et al. An experimental model for training in renal transplantation surgery with human cadavers preserved using W. Thiel’s embalming technique. J Surg Educ. 2015;72(2):192–197. doi:10.1016/j.jsurg.2014.10.00225555672
  • Available from: https://limbsandthings.com/uk/specialties/urology/?filters=tasktrainers.packs. Accessed 7 2019.
  • Gao W, Ou T, Jia J, et al. Development and evaluation of a training model for paracentetic suprapubic cystostomy and catheterization. Clinics (Sao Paulo). 2019. doi:10.6061/clinics/2019/e435
  • Available from: https://www.baus.org.uk/professionals/events/2664/emergency_urology_cadaveric_courses_2019. Accessed 7 2019.
  • Yiasemidou M, Roberts D, Glassman D, Tomlinson J, Biyani S, Miskovic D. A multispecialty evaluation of Thiel cadavers for surgical training. World J Surg. 2017;41(5):1201–1207. doi:10.1007/s00268-016-3868-428144746
  • Aydin A, Ahmed K, McCabe JE, Khan MS, Dasgupta P, Sahai A. Validation of a dry-lab training model for cystoscopy and delivery of intravesical botulinum-toxin injections. J Endourol. 2015;29(S1):A80–A81.
  • Soria F, Morcillo E, Serrano A, et al. Development and validation of a novel skills training model for retrograde intrarenal surgery. J Endourol. 2015;29(11):1276–1281. doi:10.1089/end.2015.042126230750
  • Mishra S, Sharma R, Kumar A, Ganatra P, Sabnis RB, Desai MR. Comparative performance of high-fidelity training models for flexible ureteroscopy: are all models effective? Indian J Urol. 2011;27(4):451–456. doi:10.4103/0970-1591.9143122279308
  • Matsumoto ED, Hamstra SJ, Radomski SB, Cusimano MD. A novel approach to endourological training: training at the surgical skills center. J Urol. 2001;166(4):1261–1266. doi:10.1016/S0022-5347(05)65749-711547054
  • Chou DS, Abdelshehid C, Clayman RV, McDougall EM. Comparison of results of virtual-reality simulator and training model for basic ureteroscopy training. J Endourol. 2006;20(4):266–271. doi:10.1089/end.2006.20.26616646655
  • Khan SM, Ahmed K, Gavazzi A, et al. Development and implementation of centralized simulation training: evaluation of feasibility, acceptability and construct validity. BJU Int. 2013;111(3):518–523. doi:10.1111/j.1464-410X.2012.11204.x22928639
  • Brewin J, Ahmed K, Khan MS, Jaye P, Dasgupta P. Face, content, and construct validation of the Bristol TURP trainer. J Surg Educ. 2014;71(4):500–505. doi:10.1016/j.jsurg.2014.01.01324776866
  • de Vries AH, van Genugten HG, Hendrikx AJ, et al. The Simbla TURBT simulator in urological residency training: from needs analysis to validation. J Endourol. 2016;30(5):580–587. doi:10.1089/end.2015.072326671712
  • Aydin A, Ahmed K, Brewin J, Khan MS, Dasgupta P, Aho T. Face and content validation of the prostatic hyperplasia model and holmium laser surgery simulator. J Surg Educ. 2014;71(3):339–344. doi:10.1016/j.jsurg.2013.11.00424797849
  • Villa L, Şener TE, Somani BK, et al. Initial content validation results of a new simulation model for flexible ureteroscopy: the key-box. J Endourol. 2017;31(1):72–77. doi:10.1089/end.2016.067727869504
  • Villa L, Sener TE, Cloutier J, et al. Preliminary results of intensive training on a simulation model for flexible ureteroscopy in medical students: the Kidney-Box (K-BOX) model. Proceedings of the 33rd World Congress of Endourology; 10 2015; London.
  • Blankstein U, Lantz AG, D’A Honey RJ, Pace KT, Ordon M, Lee JY. Simulation-based flexible ureteroscopy training using a novel ureteroscopy part-task trainer. Can Urol Assoc J. 2015;9(9–10):331–335. doi:10.5489/cuaj.281126644806
  • Al-Jabir A, Aydin A, Abe T, et al. Validation of the advanced scope trainer for flexible ureterorenoscopy training. Urology. 2017;110:45–50. doi:10.1016/j.urology.2017.07.04728823640
  • Ghazi A, Campbell T, Melnyk R, et al. Validation of a full-Immersion simulation platform for percutaneous nephrolithotomy using three-dimensional printing technology. J Endourol. 2017;31(12):1314–1320. doi:10.1089/end.2017.036629048214
  • Maldonado Alcaraz E, Moreno J, Montoya G, Torres-Mercado L, López V, Serrano-Brambila E. Use of a novel radiation-free fluoroscopy emulator (iPERC) to improve surgical skills in percutaneous nephrolithtotomy. Eur Urol Suppl. 2015;14(2):eV2. doi:10.1016/S1569-9056(15)61087-9
  • Dolmans VEMG, Schout BMA, de Beer NAM, Hendrikx AJM. Determination of construct validity of the URO mentor, a virtual reality simulator for endourological procedures. J Soc Simul Healthcare. 2006;1(3):192. doi:10.1097/01266021-200600130-00053
  • Gettman MT, Le CQ, Rangel LJ, Slezak JM, Bergstralh EJ, Krambeck AE. Analysis of a computer based simulator as an educational tool for cystoscopy: subjective and objective results. J Urol. 2008;179(1):267. doi:10.1016/j.juro.2007.08.14618001785
  • Gettman MT, Le CQ, Rangel LJ, Slezak JM, Bergstralh EJ, Krambeck AE. Development of a standardized curriculum for teaching cystoscopic skills using a computer-based endourologic simulator. Simul Healthc. 2009;4(2):92–97. doi:10.1097/SIH.0b013e3181871c3e19444046
  • Schout BM, Muijtjens AM, Hendrikx AJ, et al. Acquisition of flexible cystoscopy skills on a virtual reality simulator by experts and novices. BJU Int. 2010;105(2):234–239. doi:10.1111/j.1464-410X.2009.08733.x19583729
  • Schout BM, Ananias HJ, Bemelmans BL, et al. Transfer of cysto-urethroscopy skills from a virtual-reality simulator to the operating room: a randomized controlled trial. BJU Int. 2010;106(2):226–231. doi:10.1111/j.1464-410X.2009.09049.x19912184
  • Schout BM, Muijtjens AM, Hendrikx AJ, et al. Acquisition of flexible cystoscopy skills on a virtual reality simulator by experts and novices. BJU Int. 2010;105(2):234–239. doi:10.1111/j.1464-410X.2009.08733.x19583729
  • Dolmans VE, Schout BM, de Beer NA, Bemelmans BL, Scherpbier AJ, Hendrikx AJ. The virtual reality endourologic simulator is realistic and useful for educational purposes. J Endourol. 2009;23(7):1175–1181. doi:10.1089/end.2008.048719530899
  • Aloosh M, Couture F, Fahmy N, Elhilali M, Andonian S Assessment of urology postgraduate trainees’ competencies in flexible ureteroscopic stone extraction. Proceedings of the 35th World Congress of Endourology; 9 2017; Vancouver, Canada. doi:10.5489/cuaj.4570
  • Brunckhorst O, Aydin A, Abboudi H, et al. Simulation-based ureteroscopy training: a systematic review. J Surg Educ. 2015;72(1):135–143. doi:10.1016/j.jsurg.2014.07.00325130385
  • Matsumoto ED, Pace KT, D’A Honey RJ. Virtual reality ureteroscopy simulator as a valid tool for assessing endourological skills. Int J Urol. 2006;13(7):896–901. doi:10.1111/iju.2006.13.issue-716882051
  • Ogan K, Jacomides L, Shulman MJ, Roehrborn CG, Cadeddu JA, Pearle MS. Virtual ureteroscopy predicts ureteroscopic proficiency of medical students on a cadaver. J Urol. 2004;172(2):667–671. doi:10.1097/01.ju.0000131631.60022.d915247757
  • Mishra S, Kurien A, Patel R, et al. Validation of virtual reality simulation for percutaneous renal access training. J Endourol. 2010;24(4):635–640. doi:10.1089/end.2009.016620218892
  • Mishra S, Kurien A, Ganpule A, Muthu V, Sabnis R, Desai M. Percutaneous renal access training: content validation comparison between a live porcine and a virtual reality (VR) simulation model. BJU Int. 2010;106(11):1753–1756. doi:10.1111/j.1464-410X.2010.09753.x20950308
  • Noureldin YA, Fahmy N, Anidjar M, Andonian S. Is there a place for virtual reality simulators in assessment of competency in percutaneous renal access? World J Urol. 2016;34(5):733–739. doi:10.1007/s00345-015-1652-y26242727
  • Schulz GB, Grimm T, Buchner A, et al. Validation of a high-end virtual reality simulator for training transurethral resection of bladder tumors. J Surg Educ. 2019;76(2):568–577. doi:10.1016/j.jsurg.2018.08.00130181038
  • Tjiam IM, Berkers CH, Schout BM, et al. Evaluation of the educational value of a virtual reality TURP simulator according to a curriculum-based approach. Simul Healthc. 2014;9(5):288–294. doi:10.1097/SIH.000000000000004125275719
  • Bright E, Vine S, Wilson MR, Masters RS, McGrath JS. Face validity, construct validity and training benefits of a virtual reality TURP simulator. Int J Surg. 2012;10(3):163–166. doi:10.1016/j.ijsu.2012.02.01222366646
  • Sweet R, Kowalewski T, Oppenheimer P, Weghorst S, Satava R. Face, content and construct validity of the University of Washington virtual reality transurethral prostate resection trainer. J Urol. 2004;172:1953–1957. doi:10.1097/01.ju.0000141298.06350.4c15540764
  • Hudak SJ, Landt CL, Hernandez J, Soderdahl DW. External validation of a virtual reality transurethral resection of the prostate simulator. J Urol. 2010;184(5):2018–2022. doi:10.1016/j.juro.2010.06.14120850819
  • Källström R, Hjertberg H, Kjölhede H, Svanvik J. Use of a virtual reality, real-time, simulation model for the training of urologists in transurethral resection of the prostate. Scand J Urol Nephrol. 2005;39(4):313–320. doi:10.1080/0036559051003124616118107
  • Källström R, Hjertberg H, Svanvik J. Construct validity of a full procedure, virtual reality, real-time, simulation model for training in transurethral resection of the prostate. J Endourol. 2010;24(1):109–115. doi:10.1089/end.2009.011419961333
  • Tjiam IM, Berkers CH, Schout BM. Evaluation of the educational value of a virtual reality TURP simulator according to a curriculum-based approach. Simul Healthc. 2014;9(5):288–294. doi:10.1097/SIH.000000000000004125275719
  • Kuronen-Stewart C, Ahmed K, Aydin A, et al. Holmium laser enucleation of the prostate: simulation-based training curriculum and validation. Urology. 2015;86(3):639–646. doi:10.1016/j.urology.2015.06.00826126694
  • Angulo JC, Arance I, García-Tello A, et al. Virtual reality simulator for training on photoselective vaporization of the prostate with 980 nm diode laser and learning curve of the technique. Actas Urol Esp. 2014;38(7):451–458. doi:10.1016/j.acuro.2014.02.01324704128
  • Aydin A, Muir GH, Graziano ME, Khan MS, Dasgupta P, Ahmed K. Validation of the GreenLight™ simulator and development of a training curriculum for photoselective vaporisation of the prostate. BJU Int. 2015;115(6):994–1003. doi:10.1111/bju.1284224930949
  • Matsuda K, Kinoshita H, Okamoto Y. Prostatic Hyperplasia Model and Prostate Surgery Simulator. World Intellectual Property Organization. 2013 https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2013073210&_cid=P12-K7KCCJ-32997-1
  • Lovegrove CE, Abe T, Aydin A, et al. Simulation training in upper tract endourology: myth or reality? Minerva Urol Nefrol. 2017;69(6):579–588. doi:10.23736/S0393-2249.17.02873-928376609
  • Noureldin YA, Andonian S. Simulation for percutaneous renal access: where are we? J Endourol. 2017;31(Suppl 1):S10–S19. doi:10.1089/end.2016.058727617641
  • Yoshida T, Inoue T, Taguchi M, Matsuzaki T, Matsuda T. Development of a new experimental model for in vitro study of retrograde intrarenal surgery: the “T-box”. Int J Urol. 2018;25(10):898–900. doi:10.1111/iju.1375330058087
  • Klein JT, Rassweiler J, Rassweiler-Seyfried MC. Validation of a novel cost effective easy to produce and durable in vitro model for kidney-puncture and percutaneous nephrolitholapaxy-simulation. J Endourol. 2018;32(9):871–876. doi:10.1089/end.2017.083429597836
  • Available from: https://www.virtamed.com/en/news/video-custom-made-virtamed-simulator-nxtheras-rezum-bph-treatment/. Accessed 7 2019.
  • Available from: https://www.virtamed.com/en/about-us/virtamed-story/custom-simulator-neotract-urosim-urolift/. Accessed 7 2019.
  • Huri E, Skolarikos A, Tatar İ, et al. Simulation of RIRS in soft cadavers: a novel training model by the Cadaveric Research On Endourology Training (CRET) Study Group. World J Urol. 2016;34(5):741–746. doi:10.1007/s00345-015-1676-326318781
  • Bowling CB, Greer WJ, Bryant SA, et al. Testing and validation of a low-cost cystoscopy teaching model: a randomized controlled trial. Obstet Gynecol. 2010;116(1):85–91. doi:10.1097/AOG.0b013e3181e45a5220567172
  • Bele U, Kelc R. Upper and lower urinary tract endoscopy training on Thiel-embalmed cadavers. Urology. 2016l;93:27–32. doi:10.1016/j.urology.2016.01.04026993350
  • Mains E, Tang B, Golabek T, et al. Ureterorenoscopy training on cadavers embalmed by Thiel’s method: simulation or a further step towards reality? Initial report. Cent European J Urol. 2017;70(1):81–87. doi:10.5173/ceju.2017.913
  • Rai B, Tang B, Healy S, et al. Face validity study of cadavers using Thiel method of embalming for endoscopic surgery in urology. Urology. 2014;84(4):S137–138.
  • Soria F, Morcillo E, Serrano A, et al. Development and validation of a novel skills training model for retrograde intrarenal surgery. J Endourol. 2015;29(11):1276–1281. doi:10.1089/end.2015.042126230750
  • Qiu Z, Yang Y, Zhang Y, Sun YC. Modified biological training model for percutaneous renal surgery with ultrasound and fluoroscopy guidance. Chin Med J (Engl). 2011;124(9):1286–1289.21740734
  • Farhan B, Soltani T, Do R, Perez C, Choi H, Ghoniem G. Face, content, and construct validations of endoscopic needle injection simulator for transurethral bulking agent in treatment of stress urinary incontinence. J Surg Educ. 2018;75(6):1673–1678. doi:10.1016/j.jsurg.2018.04.01129730182
  • Grimsby GM, Andrews PE, Castle EP, Wolter CE, Patel BM, Humphreys MR. Urologic surgical simulation: an endoscopic bladder model. Simul Healthc. 2011;6(6):352–355. doi:10.1097/SIH.0b013e318221109621642902
  • Fernandez A, Chen E, Moore J, et al. A phantom model as a teaching modality for laparoscopic partial nephrectomy. J Endourol. 2012;26(1):1–5. doi:10.1089/end.2011.013121942798
  • Lee JY, Mucksavage P, Canales C, McDougall EM, Lin S. High-fidelity simulation based team training in urology: a preliminary interdisciplinary study of technical and nontechnical skills in laparoscopic complications management. J Urol. 2012;187(4):1385–1391. doi:10.1016/j.juro.2011.11.10622341287
  • Tunitsky E, Murphy A, Barber MD, Simmons M, Jelovsek JE. Development and validation of a ureteral anastomosis simulation model for surgical training. Female Pelvic Med Reconstr Surg. 2013;19(6):346–351. doi:10.1097/SPV.0b013e3182a331bf24165448
  • Sabbagh R, Chatterjee S, Chawla A, Hoogenes J, Kapoor A, Matsumoto ED. Transfer of laparoscopic radical prostatectomy skills from bench model to animal model: a prospective, single-blind, randomized, controlled study. J Urol. 2012;187(5):1861–1866. doi:10.1016/j.juro.2011.12.05022425041
  • Fernández-Tomé B, Díaz-Güemes I, Enciso Sanz S, et al. Validation of a new artificial model for simulated training of a laparoscopic vesicourethral anastomosis. Actas Urol Esp. 2019;23:S0210-4806(19)30069–5.
  • Molinas CR, Binda MM, Mailova K, Koninckx PR. The rabbit nephrectomy model for training in laparoscopic surgery. Hum Reprod. 2004;19(1):185–190. doi:10.1093/humrep/deh02514688180
  • Teber D, Guven S, Yaycioglu O, et al. Single-knot running suture anastomosis (one-knot pyeloplasty) for laparoscopic dismembered pyeloplasty: training model on a porcine bladder and clinical results. Int Urol Nephrol. 2010;42(3):609–614. doi:10.1007/s11255-009-9668-019902379
  • Jiang C, Liu M, Chen J, et al. Construct validity of the chicken crop model in the simulation of laparoscopic pyeloplasty. J Endourol. 2013;27(8):1032–1036. doi:10.1089/end.2013.008523590561
  • Singh AG, Jai SJ, Ganpule AP, Vijayakumar M, Sabnis RB, Desai MR. Face, content, and construct validity of a novel chicken model for laparoscopic ureteric reimplantation. Indian J Urol. 2018;34(3):189–195. doi:10.4103/iju.IJU_46_1830034129
  • Laguna MP, Arce-Alcazar A, Mochtar CA, Van Velthoven R, Peltier A. de la Rosette JJ. Construct validity of the chicken model in the simulation of laparoscopic radical prostatectomy suture. J Endourol. 2006;20(1):69–73. doi:10.1089/end.2006.20.6916426137
  • Yang RM, Bellman GC. Laparoscopic urethrovesical anastomosis: a model to assess surgical competency. J Endourol. 2006;20(9):679–682. doi:10.1089/end.2006.20.67916999626
  • Boon JR, Salas N, Avila D, Boone TB, Lipshultz LI, Link RE. Construct validity of the pig intestine model in the simulation of laparoscopic urethrovesical anastomosis: tools for objective evaluation. J Endourol. 2008;22(12):2713–2716. doi:10.1089/end.2008.005819099517
  • Available from: https://cleruro.files.wordpress.com/2019/05/program-web-compressed.pdf. Accessed 8 2019.
  • Rai BP, Stolzenburg JU, Healy S, Tang B, Jones P, Sweeney C. Preliminary validation of Thiel embalmed cadavers for laparoscopic radical nephrectomy. J Endourol. 2015;29(5):595–603. doi:10.1089/end.2014.071925565549
  • Moglia A, Ferrari V, Morelli L, Ferrari M, Mosca F, Cuschieri A. A systematic review of virtual reality simulators for robot-assisted surgery. Eur Urol. 2016;69(6):1065–1080. doi:10.1016/j.eururo.2015.09.02126433570
  • Hertz AM, George EI, Vaccaro CM, Brand TC. Head-to-head comparison of three virtual-reality robotic surgery simulators. JSLS. 2018;22(1):e2017.00081. doi:10.4293/JSLS.2017.00081
  • MacCraith E, Forde JC, Davis NF. Robotic simulation training for urological trainees: a comprehensive review on cost, merits and challenges. J Robot Surg. 2019;13(3):371–377. doi:10.1007/s11701-019-00934-130796671
  • Whitehurst SV, Lockrow EG, Lendvay TS, et al. Comparison of two simulation systems to support robotic-assisted surgical training: a pilot study (Swine model). J Minim Invasive Gynecol. 2015;22(3):483–488. doi:10.1016/j.jmig.2014.12.16025543068
  • Whittaker G, Aydin A, Raison N, et al. Validation of the RobotiX mentor robotic surgery simulator. J Endourol. 2016;30(3):338–346. doi:10.1089/end.2015.062026576836
  • Harrison P, Raison N, Abe T, et al. The validation of a novel robot-assisted radical prostatectomy virtual reality module. J Surg Educ. 2018;75(3):758–766. doi:10.1016/j.jsurg.2017.09.00528974429
  • Chowriappa A, Raza SJ, Fazili A, et al. Augmented-reality-based skills training for robot-assisted urethrovesical anastomosis: a multi-institutional randomised controlled trial. BJU Int. 2015;115(2):336–345. doi:10.1111/bju.1270424612471
  • Kang SG, Cho S, Kang SH, et al. The Tube 3 module designed for practicing vesicourethral anastomosis in a virtual reality robotic simulator: determination of face, content, and construct validity. Urology. 2014;84(2):345–350. doi:10.1016/j.urology.2014.05.00524975707
  • Kim JY, Kim SB, Pyun JH, et al. Concurrent and predictive validation of robotic simulator Tube 3 module. Korean J Urol. 2015;56(11):756–761. doi:10.4111/kju.2015.56.11.75626568793
  • Shim JS, Noh TI, Kim JY, et al. Predictive validation of a robotic virtual reality simulator: the tube 3 module for practicing vesicourethral anastomosis in robot-assisted radical prostatectomy. Urology. 2018;122:32–36. doi:10.1016/j.urology.2018.08.01330144481
  • Hung AJ, Shah SH, Dalag L, Shin D, Gill IS. Development and validation of a novel robotic procedure specific simulation platform: partial nephrectomy. J Urol. 2015;194(2):520–526. doi:10.1016/j.juro.2015.02.294925801765
  • Xu S, Perez M, Perrenot C, Hubert N, Hubert J. Face, content, construct, and concurrent validity of a novel robotic surgery patient-side simulator: the Xperience™ team trainer. Surg Endosc. 2016;30(8):3334–3344. doi:10.1007/s00464-015-4607-x26659239
  • Ramos P, Montez J, Tripp A, Ng CK, Gill IS, Hung AJ. Face, content, construct and concurrent validity of dry laboratory exercises for robotic training using a global assessment tool. BJU Int. 2014;113(5):836–842. doi:10.1111/bju.1255924224500
  • Ghazi A, Stone J, Candela B, Richards M, Joseph J. Simulated inanimate model for physical learning experience (simple) for robotic partial nephrectomy using a 3d printed kidney model. J Urol. 2015;193:e778. doi:10.1016/j.juro.2015.02.2285
  • Candela B, Stone J, Park J, et al. Concurrent validity of a simulated inanimate model for physical learning experience in partial nephrectomy (SIMPLE-PN). J Urol. 2016;195:e220. doi:10.1016/j.juro.2016.02.2787
  • Monda SM, Weese JR, Anderson BG, et al. Development and validity of a silicone renal tumor model for robotic partial nephrectomy training. Urology. 2018;114:114–120. doi:10.1016/j.urology.2018.01.03029421300
  • Johnson BA, Timberlake M, Steinberg RL, Kosemund M, Mueller B, Gahan JC. Design and validation of a low-cost, high-fidelity model for urethrovesical anastomosis in radical prostatectomy. J Endourol. 2019;33(4):331–336. doi:10.1089/end.2018.087130734578
  • Shee K, Koo K, Wu X, Ghali FM, Halter RJ, Hyams ES. A novel ex vivo trainer for robotic vesicourethral anastomosis. J Robot Surg. 2019;2019(Epub):28.
  • Hung AJ, Ng CK, Patil MB, et al. Validation of a novel robotic-assisted partial nephrectomy surgical training model. BJU Int. 2012;110(6):870–874. doi:10.1111/j.1464-410X.2012.10953.x22313582
  • von Rundstedt FC, Aghazadeh MA, Scovell J, et al. Validation of a simulation-training model for robotic intracorporeal bowel anastomosis using a step-by-step technique. Urology. 2018;120:125–130. doi:10.1016/j.urology.2018.07.03530092304
  • Cacciamani G, De Marco V, Siracusano S, et al. A new training model for robot-assisted urethrovesical anastomosis and posterior muscle-fascial reconstruction: the Verona training technique. J Robot Surg. 2017;11(2):123–128. doi:10.1007/s11701-016-0626-427440232
  • Alemozaffar M, Narayanan R, Percy AA, et al. Validation of a novel, tissue-based simulator for robot-assisted radical prostatectomy. J Endourol. 2014;28(8):995–1000. doi:10.1089/end.2014.004124762174
  • Bertolo R, Garisto J, Dagenais J, Sagalovich D, Kaouk JH. Single session of robotic human cadaver training: the immediate impact on urology residents in a teaching hospital. J Laparoendosc Adv Surg Tech A. 2018;28(10):1157–1162. doi:10.1089/lap.2018.010929708828
  • Volpe A, Ahmed K, Dasgupta P, et al. Pilot validation study of the European Association of Urology Robotic Training Curriculum. Eur Urol. 2015;68(2):292–299. doi:10.1016/j.eururo.2014.10.02525454612
  • Wiener S, Haddock P, Shichman S, Dorin R. Construction of a urologic robotic surgery training curriculum: how many simulator sessions are required for residents to achieve proficiency? J Endourol. 2015;29(11):1289–1293. doi:10.1089/end.2015.039226154108
  • Mills JT, Hougen HY, Bitner D, Krupski TL, Schenkman NS. Does robotic surgical simulator performance correlate with surgical skill? J Surg Educ. 2017;74(6):1052–1056. doi:10.1016/j.jsurg.2017.05.01128623113
  • Novara G, Volpe A, Ahmed K, Dasgupta P, Van Der Poel H, Mottrie A. 193 validation of the European Association of Urology Robotic Training Curriculum: pilot study II. Eur Urol Suppl. 2015;14(2):e193. doi:10.1016/S1569-9056(15)60195-6
  • Sclaverano S, Chevreau G, Vadcard L, et al. Biopsym: a simulator for enhanced learning of ultra- sound-guided prostate biopsy. Stud Health Technol Inform. 2009;142:301–306.19377173
  • Fiard G, Selmi S-Y, Promayon E, et al. Initial validation of a virtual-reality learning environment for prostate biopsies: realism matters!. J Endourol. 2014;28:453–458. doi:10.1089/end.2013.045424147849
  • Fiard G, Selmi S, Promayon E, Descotes J, Troccaz J. Simulation-based training for prostate biopsies: towards the validation of the Biopsym simulator. Minim Invasive Ther Allied Technol. 2019;1–7. doi:10.1080/13645706.2019.1653926
  • Chalasani V, Cool D, Sherebrin S, Fenster A, Chin J, Izawa J. Development and validation of a virtual reality transrectal ultrasound guided prostatic biopsy simulator. Can Urol Assoc J. 2011;19–26. doi:10.5489/cuaj.0915921470507
  • Available from: https://simulation.health.ufl.edu/technology-development/augmented-reality-mixed-simulation/trus-pbx-sim/mixed-simulator-of-transrectal-transperineal-ultrasound-guided-prostate-biopsy-video/. Accessed 2 2020.
  • Ritsos PD, Edwards MR, Shergill IS, John NW A Haptics-enabled simulator for transperineal ultrasound-guided biopsy. Eurographics Workshop on Visual Computing for Biology and Medicine The Eurographics Association; 2015; Chester, UK.
  • Thaker N, Kudchadker R, Swanson D, et al. Establishing high-quality prostate brachytherapy using a phantom simulator training program. Inter J Radiat Oncol Biol Phys. 2014;90(3):579–586. doi:10.1016/j.ijrobp.2014.06.036
  • Goksel O, Sapchuk K, Morris W, Salcudean S. Prostate brachytherapy training with simulated ultrasound and fluoroscopy images. IEEE Trans Biomed Eng. 2013;60(4):1002–1012. doi:10.1109/TBME.2012.222264223047861
  • Poder J, Carrara M, Howie A, Cutajar D, Bucci J, Rosenfeld A. Derivation of in vivo source tracking error thresholds for TRUS-based HDR prostate brachytherapy through simulation of source positioning errors. Brachytherapy. 2019;18(5):711–719. doi:10.1016/j.brachy.2019.05.00131175015
  • Sehrawat A, Keelan R, Shimada K, Wilfong D, McCormick J, Rabin Y. Simulation-based cryosurgery training. Technol Cancer Res Treat. 2016;15(6):805–814. doi:10.1177/153303461561150926546576
  • Gunther JR, Liauw SL, Choi S, et al. A prostate fossa contouring instructional module: implementation and evaluation. J Am Coll Radiol. 2016;13(7):835–841.e1. doi:10.1016/j.jacr.2016.02.03027210232
  • Anderson O, Davis R, Hanna GB, Vincent CA. Surgical adverse events: a systematic review. Am J Surg. 2013;206(2):253–262. doi:10.1016/j.amjsurg.2012.11.00923642651
  • Panesar SS, Carson-Stevens A, Mann BS, Bhandari M, Madhok R. Mortality as an indicator of patient safety in orthopedics: lessons from qualitative analysis of a database of medical errors. BMC Musculoskelet Disord. 2012;13(1):93. doi:10.1186/1471-2474-13-9322682470
  • Leuschner S, Leuschner M, Kropf S, Niederbichler AD. Non-technical skills training in the operating theatre: a meta-analysis of patient outcomes. Surgeon. 2019;17(4):233–243. doi:10.1016/j.surge.2018.07.00130093229
  • Ounounou E, Aydin A, Brunckhorst O, Khan MS, Dasgupta P, Ahmed K. Nontechnical skills in surgery: a systematic review of current training modalities. J Surg Educ. 2019;76(1):14–24. doi:10.1016/j.jsurg.2018.05.01730122636
  • Kwong JC, Lee JY, Goldenberg MG. Understanding and assessing nontechnical skills in robotic urological surgery: a systematic review and synthesis of the validity evidence. J Surg Educ. 2019;76(1):193–200. doi:10.1016/j.jsurg.2018.05.00929958854
  • Somasundram K, Spence H, Colquhoun AJ, Mcilhenny C, Biyani CS, Jain S. Simulation in urology to train non-technical skills in ward rounds. BJU Int. 2018;122(4):705–712. doi:10.1111/bju.2018.122.issue-429777617
  • Abdelshehid CS, Quach S, Nelson C, et al. High-fidelity simulation-based team training in urology: evaluation of technical and nontechnical skills of urology residents during laparoscopic partial nephrectomy. J Surg Educ. 2013;70(5):588–595. doi:10.1016/j.jsurg.2013.04.00924016369
  • Lee JY, Mucksavage P, Canales C, McDougall EM, Lin S. High-fidelity simulation based team training in urology: a preliminary interdisciplinary study of technical and nontechnical skills in laparoscopic complications management. J Urol. 2012;187(4):1385–1391. doi:10.1016/j.juro.2011.11.10622341287
  • Gettman MT, Pereira CW, Lipsky K, et al. Use of high-fidelity operating room simulation to assess and teach communication, teamwork and laparoscopic skills: initial experience. J Urol. 2009;181(3):1289–1296. doi:10.1016/j.juro.2008.11.01819152929
  • Brewin J, Tang J, Dasgupta P, et al. Full immersion simulation: validation of a distributed simulation environment for technical and non-technical skills training in urology. BJU Int. 2015;116(1):156–162. doi:10.1111/bju.2015.116.issue-125053251
  • Brunckhorst O, Shahid S, Aydin A, et al. The relationship between technical and nontechnical skills within a simulation-based ureteroscopy training environment. J Surg Educ. 2015;72(5):1039–1044. doi:10.1016/j.jsurg.2015.04.00225980828
  • Available from: https://www.elsevier.com/search-results?query=gunner%20goggles&labels=books&page=1#top. Accessed 9 2019.
  • Available from: https://3d4medical.com/press/pearson-and-3d4medical-mixed-reality-and-hololens. Accessed 9 2019.
  • Rahman R, Wood ME, Qian L, Price CL, Johnson AA, Osgood GM. Head-mounted display use in surgery: a systematic review. Surg Innov. 2019;27:88–100. Epub 2019 Sept 12.31514682
  • Porpiglia F, Fiori C, Checcucci E, Amparore D, Bertolo R. Hyperaccuracy three-dimensional reconstruction is able to maximize the efficacy of selective clamping during robot-assisted partial nephrectomy for complex renal masses. Eur Urol. 2018;74(5):651–660. doi:10.1016/j.eururo.2017.12.02729317081
  • Porpiglia F, Checcucci E, Amparore D, et al. Three-dimensional elastic augmented-reality robot-assisted radical prostatectomy using hyperaccuracy three-dimensional reconstruction technology: a step further in the identification of capsular involvement. Eur Urol. 2019;76(4):505–514. doi:10.1016/j.eururo.2019.03.03730979636
  • Bertolo R, Hung A, Porpiglia F, Bove P, Schleicher M, Dasgupta P. Systematic review of augmented reality in urological interventions: the evidences of an impact on surgical outcomes are yet to come. World J Urol. 2019; 1–10. Epub 2019 Mar 2.
  • Available from: https://www.proximie.com. Accessed 10 2019.
  • Chen J, Remulla D, Nguyen JH, et al. Current status of artificial intelligence applications in urology and their potential to influence clinical practice. BJU Int. 2019;2019(Epub):20.