10
Views
1
CrossRef citations to date
0
Altmetric
Review

Prognostic role of neuroendocrine differentiation in prostate cancer, putting together the pieces of the puzzle

, , , , , , & show all
Pages 109-124 | Published online: 23 Jul 2010

References

  • Di Sant’Agnese PA. Neuroendocrine differentiation in prostatic carcinoma: an update on recent developments. Ann Oncol. 2001;12 Suppl 2:S135–S140.
  • Vashchenko N, Abrahamsson PA. Neuroendocrine differentiation in prostate cancer: implications for new treatment modalities. Eur Urol. 2005;47(2):147–155.
  • Tricoli JV Schoenfeldt M, Conley BA. Detection of prostate cancer and predicting progression: current and future diagnostic markers. Clin Cancer Res. 2004;10(12 Pt 1):3943–3953.
  • Bostwick DG, Dousa MK, Crawford BG, et al. Neuroendocrine differentiation in prostatic intraepithelial neoplasia and adenocarcinoma. Am J Surg Pathol. 1994;18(12):1240–1246.
  • Volante M, Rindi G, Papotti M. The grey zone between pure (neuro) endocrine and non-(neuro)endocrine tumours: a comment on concepts and classification of mixed exocrine-endocrine neoplasms. Virchows Arch. 2006;449(5):499–506.
  • Yuan TC, Veeramani S, Lin MF. Neuroendocrine-like prostate cancer cells: neuroendocrine transdifferentiation of prostate adenocarcinoma cells. Endocr Relat Cancer. 2007;14:531–547.
  • Huang J, Yao JL, di Sant’Agnese PA, Yang Q, Bourne PA, Na Y. Immunohistochemical characterization of neuroendocrine cells in prostate cancer. Prostate. 2006;66:1399–1406.
  • Van Bokhoven A, Varella-Garcia M, Korch C, et al. Molecular characterization of human prostate carcinoma cell lines. Prostate. 2003;57:205–225.
  • Segal NH, Cohen RJ, Haffejee Z, Savage N. BCL-2 proto-oncogene expression in prostate cancer and its relationship to the prostatic neuroendocrine cell. Arch Pathol Lab Med. 1994;118:616–618.
  • Slovin SF. Neuroendocrine differentiation in prostate cancer: a sheep in wolf ’s clothing? [Review] Nat Clin Pract Urol. 2006;3(3):138–144.
  • Pearse AG, Takor T. Embryology of the diffuse neuroendocrine and its relationship to the common peptides. Fed Proc. 1979;38(9):2288–2294.
  • Schron DS, Gipson T, Mendelsohn G. The histogenesis of small cell carcinoma of the prostate: an immunohistochemical study. Cancer. 1984;53:2478–2480.
  • Bonkhoff H. Neuroendocrine cells in benign and malignant prostate tissue: morphogenesis, proliferation and androgen receptor status. Prostate Suppl. 1998;8:18–22.
  • Sauer CG, Roemer A, Grobholz R. Genetic analysis of neuroendocrine tumor cells in prostatic carcinoma. Prostate. 2006;66(3):227–234.
  • Palapattu GS, Wu C, Silvers CR, et al. Selective expression of CD 44, a putative prostate cancer stem cell marker, in neuroendocrine tumor cells of human prostate cancer. Prostate. 2009;69(7):787–798.
  • Deeble PD, Cox ME, Frierson HF, et al. Androgen independent growth and tumorigenesis of prostate cancer cells are enhanced by the presence of PKA-differentiated neuroendocrine cells. Cancer Res. 2007;67(8):3663–3672.
  • Spiotto MT, Chung TD. STAT3 mediates IL-6-induced neuroendocrine differentiation in prostate cancer cells. Prostate. 2000;42(3):186–195.
  • Deeble PD, Murphy DJ, Parsons SJ, Cox ME. Interleukin-6-, cyclic AMP-mediated signalling potentiates neuroendocrine differentiation of LNCaP prostate tumor cells. Mol Cell Biol. 2001;21(24):8471–8482.
  • Cox ME, Deeble PD, Bissonette EA, Parsons SJ. Activated 3’,5’-cyclic AMP-dependent protein kinase is sufficient to induce neuroendocrine-like differentiation of the LNCaP prostate tumor cell line. J Biol Chem. 2000;275(18):13812–13818.
  • Chen T, Cho RW, Stork PJ, Weber MJ. Elevation of cyclic adenosine 3’,5’-monophosphate potentiates activation of mitogen-activated protein kinase by growth factors in LNCaP prostate cancer cells. Cancer Res. 1999;59(1):213–218.
  • Zelivianski S, Verni M, Moore C, Kondrikov D, Taylor R, Lin MF. Multipathways for transdifferentiation of human prostate cancer cells into neuroendocrine-like phenotype. Biochim Biophys Acta. 2001;1539(1–2):28–43.
  • Pinski J, Wang Q, Quek ML, et al. Genistein-induced neuroendocrine differentiation of prostate cancer cells. Prostate. 2006;66(11):1136–1143.
  • Diener KR, Need EF, Buchanan G, Hayball JD. TGF-beta signalling and immunity in prostate tumourigenesis. Expert Opin Ther Targets. 2010;14(2):179–192.
  • Jongsma J, Oomen MH, Noordzij MA, et al. Different profiles of neuroendocrine cell differentiation evolve in the PC-310 human prostate cancer model during long-term androgen deprivation. Prostate. 2002;50(4):203–215.
  • Ahlgren G, Pedersen K, Lundberg S, Aus G, Hugosson J, Abrahamsson PA. Regressive changes and neuroendocrine differentiation in prostate cancer after neoadjuvant hormonal treatment. Prostate. 2000;42:274–279.
  • Berruti A, Mosca A, Tucci M, et al. Independent prognostic role of circulating chromogranin A in prostate cancer patients with hormone-refractory disease. Endocr Relat Cancer. 2005;12(1):109–117.
  • Sciarra A, Monti S, Gentile V, Mariotti G, et al. Variation in chromogranin A serum levels during intermittent versus continuous androgen deprivation therapy for prostate adenocarcinoma. Prostate. 2003;55(3):168–79.
  • Cheville JC, Tindall D, Boelter C, et al. Metastatic prostate carcinoma to bone: clinical and pathologic features associated with cancer-specific survival. Cancer. 2002;95:1028–1036.
  • Roudier MP, True LD, Higano CS, et al. Phenotypic heterogeneity of end-stage prostate carcinoma metastatic to bone. Hum Pathol. 2003;34(7):646–653.
  • Frković-Grazio S, Kraljić I, Trnski D, Tarle M. Immunohistochemical staining and serotest markers during development of a sarcomatoid and small cell prostate tumor. Anticancer Res. 1994;14(5B):2151–2156.
  • Vignani F, Russo L, Tucci M, et al. Why castration-resistant prostate cancer patients with neuroendocrine differentiation should be addressed to a cisplatin-based regimen. Ann Oncol. 2009;20(12):2019–2020.
  • Deng X, Liu H, Huang J, et al. Ionizing radiation induces prostate cancer neuroendocrine differentiation through interplay of CREB and ATF2: implications for disease progression. Cancer Res. 2008;68(23):9663–9670.
  • Tang Y, Wang L, Goloubeva O, Khan MA, Lee D, Hussain A. The relationship of neuroendocrine carcinomas to anti-tumor therapies in TRAMP mice. Prostate. 2009;69(16):1763–1773.
  • Cox ME, Deeble PD, Lakhani S, Parsons SJ. Acquisition of neuroendocrine characteristics by prostate tumor cells is reversible: implications for prostate cancer progression. Cancer Res. 1999;59(15):3821–3830.
  • Wu C, Huang J. Phosphatidylinositol 3-kinase-AKT-mammalian target of rapamycin pathway is essential for neuroendocrine differentiation of prostate cancer. J Biol Chem. 2007;282(6):3571–3583.
  • Guillemot F, Lo LC, Johnson JE, et al. Mammalian achaete-scute homolog 1 is required for the early development of olfactory and autonomic neurons. Cell. 1993;75:463–476.
  • Borges M, Linnoila RI, van de Velde HJ, et al. An achaete-scute homologue essential for neuroendocrine differentiation in the lung. Nature. 1997;386:852–855.
  • Jiang SX, Kameya T, Asamura H, et al. hASH1 expression is closely correlated with endocrine phenotype and differentiation extent in pulmonary neuroendocrine tumors. Mod Pathol. 2004;17:222–229.
  • Osada H, Tatematsu Y, Yatabe Y, et al. ASH1 gene is a specific therapeutic target for lung cancers with neuroendocrine features. Cancer Res. 2005;65:10680–10685.
  • Shida T, Furuya M, Nikaido T, et al. Aberrant expression of human achaete-scute homologue gene 1 in the gastrointestinal euroendocrine carcinomas. Clin Cancer Res. 2005;11:450–458.
  • Rostomily RC, Bermingham-McDonogh O, Berger MS, et al. Expression of neurogenic basic helix-loop-helix genes in primitive neuroectodermal tumors. Cancer Res. 1997;57:3526–3531.
  • Ball DW, Azzoli CG, Baylin SB, et al. Identification of a human achaete-scute homolog highly expressed in neuroendocrine tumors. Proc Natl Acad Sci U SA. 1993;90:5648–5652.
  • Rapa I, Ceppi P, Bollito E, et al. Human ASH1 expression in prostate cancer with neuroendocrine differentation. Mod Pathol. 2008;21(6):700–707.
  • Mori R, Xiong S, Wang Q, et al. Gene profiling and pathway analysis of neuroendocrine transdifferentiated prostate cancer cells. Prostate. 2009;69(1):12–23.
  • Puccetti L, Supuran CT, Fasolo PP, et al. Skewing towards neuroendocrine phenotype in high grade or high stage androgen-responsive primary prostate cancer. Eur Urol. 2005;48(2):215–221.
  • Bollito E, Berruti A, Bellina M, et al. Relationship between neuroendocrine features and prognostic parameters in human prostate carcinoma. Ann Oncol. 2001;12 Suppl 2:S159–S164.
  • Ather MH, Abbas F, Faruqui N, Israr M, Pervez S. Correlation of three immunohistochemically detected markers of neuroendocrine differentiation with clinical predictors of disease progression in prostate cancer. BMC Urol. 2008;8:21.
  • McWilliam LJ, Manson C, George NJR. Neuroendocrine differentiation and prognosis in prostatic adenocarcinoma. Br J Urol. 1997;80: 287–290
  • Singh D, Febbo PG, Ross K, et al. Gene expression correlates of clinical prostate cancer behavior. Cancer Cell. 2002;1:203–209.
  • Tarle M, Ahel MZ, Kovacić K. Acquired neuroendocrine-positivity during maximal androgen blockade in prostate cancer patients. Anticancer Res. 2002;22(4):2525–2529.
  • Bonkhoff H, Wernert N, Dhom G, et al. Relation of endocrine-paracrine cells to cell proliferation in normal, hyperplastic and neoplastic human prostate. Prostate. 1991;19:91–98.
  • Bonkhoff H. Neuroendocrine differentiation in human prostate cancer. Morphogenesis, proliferation and androgen receptor status. Ann Oncol. 2001;12 Suppl 2:S141–S144.
  • Mazzucchelli R, Montironi R, Santinelli A, Lucarini G, Pugnaloni A, Biagini G. Vascular endothelial growth factor expression and capillary architecture in high-grade PIN and prostate cancer in untreated and androgen-ablated patients. Prostate. 2000;45(1):72–79.
  • Borre M, Nerstrom B, Overgaard J. Association between immunohistochemical expression of vascular endothelial growth factor (VEGF), VEGF-expressing neuroendocrine-differentiated tumor cells, and outcome in prostate cancer patients subjected to watchful waiting. Clin Cancer Res. 2000;6(5):1882–1890.
  • Partanen TA, Arola J, Saaristo A, et al. VEGF-C and VEGF-D expression in neuroendocrine cells and their receptor, VEGFR-3, in fenestrated blood vessels in human tissues. FASEB J. 2000;14(3):2087–2096.
  • Xing N, Qian J, Botswick D, Bergstralh E, Young CY Neuroendocrine cells in human prostate over-express the anti-apoptosis protein survivin. Prostate. 2001;48:7–15.
  • Hirota K, Semenza GL. Regulation of angiogenesis by hypoxiainducible factor 1. Crit Rev OncolHematol. 2006;59(1):15–26.
  • McDonnell TJ, Troncoso P, Brishay SM, et al. Expression of the protooncogene bcl-2 in the prostate and its association with emergence of androgen-independent prostate cancer. Cancer Res. 1992;52:6940–6944.
  • Abrahamsson PA, Waldstrom LB, Almmets J. Peptide-hormone and serotonin-immuno-reactive cells in normal and hyperplastic glands. Pathol Res Pract. 1986;181:675–683.
  • Nakada SY, Di Sant’Agnese PA, Moynes RA, Hiipakka RA, Cockett ATK, Abrahamsson PA. The androgen receptor status of neuroendocrine cells in human benign and malignant prostatic tissue. Cancer Res. 1993;53:1967–1970.
  • Scher HI, Sawyers CL. Biology of progressive, castration-resistant prostate cancer: directed therapies targeting the androgen receptor signaling axis. J Clin Oncol. 2005;23(32):8253–8261.
  • Jin RJ, Lho Y, Connelly L, et al. The nuclear factor-kappaB pathway controls the progression of prostate cancer to androgen-indipendent growth. Cancer Res. 2008;68(16):6762–6769.
  • Yang JC, Ok JH, Busby JE, Borowsky AD, Kung HJ, Evans CP. Aberrant activation of androgen receptor in new neuropeptide-autocrine model of androgen-insensitive prostate cancer. Cancer Res. 2009;69(1):151–160.
  • Tarle M, Spajic B, Kraljic I, Kusic Z. Continuous finasteride therapy for benign prostate hypertrophy upgrades both neuroendorcine differentiation and aggressive prostate cancer. Anticancer Res. 2009;29(5):1797–1801.
  • Thompson IM, Goodman PJ, Tangen CM, et al. The influence of finasteride on the development of prostate cancer. N Engl J Med. 2003;349:216–224.
  • Redman MW, Tangen CM, Goodman PJ, Lucia MS, Coltman CA Jr, Thompson IM. Finasteride does not increase the risk of high-grade prostate cancer: a bias-adjusting modeling approach. Cancer Prev Res (Phila Pa). 2008;1(3):174–181.
  • Bass R, Perry B, Langenstroer P, et al. Effect of short-term finasteride on apoptotic factors and androgen receptors in prostate cancer cells. J Urol. 2009;181(2):615–619.
  • Kadmon D, Thomson TC, Lynch GR, Scardino PT. Elevated plasma chromogranin-A concentrations in prostatic carcinoma. J Urol. 1991;146(2):358–361.
  • Cussenot O, Villette JM, Valeri A, et al. Plasma neuroendocrine markers in patients with benign prostatic hyperplasia and prostatic carcinoma. J Urol. 1996;155(4):1340–1343.
  • Berruti A, Dogliotti L, Mosca A, et al. Circulating neuroendocrine markers in patients with prostate carcinoma. Cancer. 2000;88(11):2590–2597.
  • Taplin ME, George DJ, Halabi S, et al. Prognostic significance of plasma chromogranin a levels in patients with hormone-refrectary prostate cancer treated in cancer and leukemia group B 9480 study. Urology. 2005;66(2):386–391.
  • Abrahamsson PA, Cockett ATK, di Sant’Agnese PA. Prognostic significance of neuroendocrine differentiation in clinically localized prostatic carcinoma. Prostate Suppl. 1998;8:37–42.
  • Ahlgren G, Pedersen K, Lundberg S, Aus G, Hugosson J, Abrahamsson PA. Neuroendocrine differentiation is not prognostic of failure after radical prostatectomy but correlates with tumor volume. Urol. 2000;56:1011–1015.
  • Bostwick DG, Qian J, Pacelli A, Zincke H, Blute M. Neuroendocrine expression in node positive prostate cancer: correlation with systemic progaression and patient survival. J of Urol. 2002;168:1204–1211.
  • Bubendorf L, Sauter G, Moch H, et al. Ki67 labelling index: an independent predictor of progression in prostate cancer treated by radical prostatectomy. J Pathol. 1996;178:437–441.
  • Casella R, Bubendorf L, Sauter G, Moch H, Mihatsch MJ, Gasser TC. Focal neuroendocrine differentiation lacks prognostic significance in prostate core needle biopsies. J Urol. 1998;160:406–410.
  • Mc William LJ, Manson C, George NJR. Neuroendocrine differentiation and prognosis in prostatic adenocarcinoma. Br J Urol. 1997;80:287–290.
  • Noordzij MA, Van der Kwast TH, Van Steenbrugge GJ, Hop WJC, Scroder FH. The prognostic influence of neuroendocrine cells in prostate cancer: results of a long-term follow up study with patients treated by radical prostatectomy. Int J Cancer. 1995;62:252–258.
  • Veltri RW, Isharwal S, Miller MC, et al. Long-term assessment of prostate cancer progression free survival: evaluation of pathological parameters, nuclear shape and molecular biomarkers of pathogenesis. Prostate. 2008;68:1806–1815.
  • Autorino R, Lamendola MG, De Luca G, et al. Neuroendocrine immunophenotype as predictor of clinical recurrence in 110 patients with prostate cancer. Int JImmunopathol Pharmacol. 2007;20:765–770.
  • Theodorescu D, Broder SR, Boyd JC, Mills SE, Frierson HF Jr. Cathepsin D and chromogranin A as predictors of long-term disease specific survival after radical prostatectomy for localized carcinoma of the prostate. Cancer. 1997;80:2109–2119.
  • Gunia S, Albrecht K, Koch S, et al. Ki67 staining index and neuroendocrine differentiation aggravate adverse prognostic parameters in prostate cancer and are characterized by negligible inter-observer variability. World J Urol. 2008;26:243–250.
  • Kamiya N, Suzuki H, Kawamura K, et al. N euroendocrine differentiation in stage D2 prostate cancers. Int J Urol. 2008;15:423–428.
  • Krijnen JLM, Bogdanowicz JFAT, Seldenrijk CA, Mulder PGH, Van der Kwast TH. The prognostic value of neuroendocrine differentiation in adenocarcinoma of the prostate in relation to progression of disease after endocrine therapy. J Urol. 1997;158:171–174.
  • Lilleby W, Paus E, Skovlund E, Fossa SD. Prognostic value of neuroendocrine serum markers and PSA in irradiated patients with pN0 localized prostate cancer. Prostate. 2001;46:126–133.
  • Quek M, Daneshmand S, Rodrig S, et al. Prognostic significance of neuroendocrine expression in lymph node-positive prostate cancer. Urology. 2006;67:1247–1252.
  • Sciarra A, Gentile V, Autran Gomez AM, et al. Chromogranin A and biochemical progression-free survival in prostate adenocarcinomas submitted to radical prostatectomy. Endocr Relat Cancer. 2007;14:625–632.
  • Yamada Y, Nakamura K, Aoki S, et al. An immunohistochemical study of chromogranin A and human epidermal growth factor-2 expression using initial prostate biopsy specimens from patients with bone metastatic prostate cancer. BJU Int. 2007;99:185–195.
  • Weinstein MH, Partin AW, Veltri RW, Epstein JI. Neuroendocrine differentiation in prostate cancer: enhanced predictor of progression after radical prostatectomy. Hum Pathol. 1996;22:683–687.
  • Scher HI, Halabi S, Tannock I, et al. Design and endpoints of clinical trials for patients with progressive prostate cancer and castrate levels of testosterone: recommendations of the prostate cancer clinical trials working group. J Clin Oncol. 2008;26:1148–1159.
  • Berruti A, Mosca A, Porpiglia F, et al. Chromogranin A expression in patients with hormone naïve prostate cancer predicts the development of hormone refractory disease. J Urol. 2007;178:838–843.
  • Berruti A, Bollito E, Cracco C, et al. The prognostic role of immunohistochemical chromogranin A expression in prostate cancer patients is significantly modified by androgen-deprivation therapy. Prostate. 2009 [In press].
  • Brevini TA, Bianchi R, Motta M. Direct inhibitory effect of somatostatin on the growth of the human prostatic cancer cell line LNCaP: possible mechanism of action. J Clin Endocrinol Metab. 1993;77(3):626–631.
  • Bogden AE, Taylor JE, Moreau JP, Coy DH, LePage DJ. Response of human lung tumor xenografts to treatment with a somatostatin analogue (Somatuline). Cancer Res. 1990;50(14):4360–4365.
  • Ruscica M, Arvigo M, Gatto F, et al. Regulation of prostate cancer cell proliferation by somatostatin receptor activation. Mol Cell Endocrinol. 2010;315:254–262.
  • Maulard C, Richaud P, Droz JP, Jessueld D, Dufour-Esquerré F, Housset M. Phase I-II study of the somatostatin analogue lanreotide in hormone-refractory prostate cancer. Cancer Chemother Pharmacol. 1995;36(3):259–262.
  • Kälkner KM, Acosta S, Thorsson O, et al. Octreotide scintigraphy and Chromogranin A do not predict clinical response in patients with octreotide acetate-treated hormone-refractory prostate cancer. Prostate Cancer Prostatic Dis. 2006;9(1):92–98.
  • Kälkner KM, Nilsson S, Westlin JE. [111In-DTPA-D-Phe1]-octreotide scintigraphy in patients with hormone-refractory prostatic adenocarcinoma can predict therapy outcome with octreotide treatment: a pilot study. Anticancer Res. 1998;18(1B):513–516.
  • Logothetis CJ, Hossan EA, Smith TL. SMS 201–995 in the treatmentof refractory prostatic cancer. Anticancer Res. 1994;14:2731–2734.
  • Figg WD, Thibault A, Cooper MR, et al. A phase I study of the somatostatin analogue somatuline in patients with metastatic hormone-refractory prostate cancer. Cancer. 1995;75:2159–2164.
  • Rinke A, Müller HH, Schade-Brittinger C, et al. Placebo-controlled, double-blind, prospective, randomized study on the effect of octreotide LAR in the control of tumor growth in patients with metastatic neuroendocrine midgut tumors: a report from the PROMID Study Group. J Clin Oncol. 2009;27(28):4656–4663.
  • Berruti A, Dogliotti L, Mosca A, et al. Effects of the somatostatin analog lanreotide on the circulating levels of chromogranin-A, prostate-specific antigen, and insulin-like growth factor-1 in advanced prostate cancer patients. Prostate. 2001;47(3):205–211.
  • Reubi JC, Schaer JC, Markwalder R, Waser B, Horisberger U, Laissue J. Distribution of somatostatin receptors in normal and neoplastic human tissues: recent advances and potential relevance. Yale J Biol Med. 1997;70(5–6):471–479.
  • Schmid HA. Pasireotide (SOM230): development, mechanism of action and potential applications. Mol Cell Endocrinol. 2008;286(1–2):69–74.