16
Views
0
CrossRef citations to date
0
Altmetric
Original Research

Evaluating the performance of DFT methods in electric property calculations: sodium chloride as a test case

Pages 1-8 | Published online: 11 Jul 2013

References

  • Jones RO, Gunnarson O. The density functional formalism, its applications and prospects. Rev Mod Phys. 1989;61:689–746.
  • Civalleri B, Presti D, Dovesi R, Savin A. On choosing the best density functional approximation. Chem Modell. 2012;9:168–185.
  • Scheiner AC, Baker J, Andzelm JW. Molecular Energies and Properties from Density Functional Theory: Exploring Basis Set Dependence of Kohn-Sham Equation Using Several Density. Functionals. Int J Quant Chem. 1997;18:775–795.
  • Cai ZL, Sendt K, Reimers JR. Failure of density-functional theory and time-dependent density-functional theory for large extended p systems. J Chem Phys. 2002;117:5543–5549.
  • del Campo JM, Gazquez JL, Trickey SB, Vela A. Non-empirical improvement of PBE and its hybrid PBE0 for general description of molecular properties. J Chem Phys. 2012;136(10):104108.
  • Maroulis G. Evaluating the Performance of Correlated Methods in Molecular Property Calculations: Pattern Recognition and Clustering in Spaces of Theoretical Descriptions. Int J Quant Chem. 1995;55:173–180.
  • Maroulis G. On the accurate theoretical determination of the static hyperpolarizability of trans-butadiene. J Chem Phys. 1999;111:583–591.
  • Maroulis M. J Chem Phys. 2000;113:1813–1820.
  • Christodouleas C, Xenides D, Simos TE. J Comput Chem. 2010;31:412–420.
  • Xenides D, Karamanis P, Pouchan C. A critical analysis of the performance of new generation functionals on the calculation of the (hyper) polarizabilities of clusters of varying stoichiometry: Test case the SimGen (m + n = 7, n = 0–7) clusters. Chem Phys Lett. 2010;498:134–139.
  • Johnson MD, Subbaswamy KR, Senatore G. Hyperpolarizabilities of alkali halide crystals using the local-density approximation. Phys Rev B. 1987;36:9202–9211.
  • Ching WY, Gan F and Huang MZ. Band theory of linear and nonlinear susceptibilities of some binary ionic insulators. Phys Rev B 1995;52:1596–1611.
  • Guella T, Miller TM, Stockdale JAD, Bederson B, Vuskovii L. J Chem Phys. 1991;94:6857–6861.
  • Chauhan RS, Sharma SC, Sharma SB, Sharma BS. Analysis of polarizabilities, potentials, and geometries of alkali-halide dimers. J Chem Phys. 1991;95:4397–4406.
  • Weis P, Ochsenfeld C, Ahlrichs R, Kappes MM. Ab initio studies of small sodium-sodium halide clusters, NanCIn and NanCI, (n#4). J Chem Phys. 1992;97:2553–2560.
  • Maroulis G, Thakkar AJ. Multipole moments, polarizabilities, and hyperpolarizabilities for N2 from fourth-order, many-body perturbation theory calculations. J Chem Phys. 1988;88:7623–7632.
  • Maroulis G. A systematic study of basis set, electron correlation, and geometry effects on the electric multipole moments, polarizability, and hyperpolarizability of HCl. J Chem Phys. 1998;108:5432–5448.
  • Maroulis G. Computational Aspects of Interaction Hyperpolarizability Calculations. A Study on H2...H2, Ne...HF, Ne...FH, He...He, Ne... Ne, Ar.Ar, and Kr.Kr. J Phys Chem A. 2000;104:4772–4779.
  • Maroulis G. Accurate electric multipole moment, static polarizability and hyperpolarizability derivatives for N2. J Chem Phys. 2003;118:2673–2687.
  • Haskopoulos A, Maroulis G. Interaction induced electric dipole moment and (hyper)polarizability in the dihydrogen-helium pair. Chem Phys. 2010;367:127–135.
  • Buckingham AD. Permanent and induced molecular moments and long-range intermolecular forces. Adv Chem Phys. 1967;12:107–142.
  • McLean AD, Yoshimine M. Theory of molecular polarizabilities. J Chem Phys. 1967;47:1927–1935.
  • Pullman B. Intermolecular interactions : From diatomics to biopolymers. New York: Wiley. 1978: p.1.
  • Szabo A, Ostlund NS. Modern Quantum Chemistry. New York: McMillan; 1982.
  • Wilson S. Electron correlation in molecules. Oxford: Clarendon; 1984.
  • Helgaker T, Jorgensen P, J.Olsen J. Molecular Electronic-Structure Theory. Chichester: Wiley; 2000.
  • Frisch MJ, Trucks GW, Schlegel HB, et al. GAUSSIAN 03, Revision D.01. Wallingford (CT): Gaussian; 2004.
  • Maroulis G. Applying Conventional Ab Initio and Density Functional Theory Approaches to Electric Property Calculations. Quantitative Aspects and Perspectives. Struct Bond. 2012;149:95–130.
  • Chartrand G, Lesniak L. Graphs and digraphs. Belmont (CA): Wadsworth; 1986.
  • Spath H. Cluster analysis algorithms. Chichester, UK: Ellis Horwood; 1980.
  • Woon DE, Dunning Jr TH. Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon. J Chem Phys. 1993;98:1358–1371.
  • Huber KP, G.Herzberg G. Molecular spectra and molecular structure: IV Constants of diatomic Molecules. New York: Van Nostrand; 1979.
  • Matcha, RL. Theoretical Analysis of the Electronic Structure and Molecular Properties of the Alkali Halides. III. Sodium Chloride. J Chem Phys. 1968;48:335–343.
  • Backskay GB, Buckingham AD. Theoretical Analysis of the Electronic Structure and Molecular Properties of the Alkali Halides. III. Sodium Chloride. Mol Phys.
  • Pluta T. Nonlinear electric properties of alkali metal halides. Mol Phys. 2001;99:1535–1547.
  • Hebert AJ, Lovas FJ, Melendres CA, Hollowell CD, Story TL Jr, Street Jr K. Dipole Moments of Some Alkali Halide Molecules by the Molecular Beam Electric Resonance Method. J Chem Phys. 1968;48:2824–2825.
  • Maroulis G, Makris C, Xenides D, Karamanis P. Electric dipole and quadrupole moment and dipole polarizability of CS, SiO and SiS. Mol Phys. 2000;98:481–491.