69
Views
1
CrossRef citations to date
0
Altmetric
Original Research

Ab initio calculation of ionization potential and electron affinity of six common explosive compounds

, &
Pages 11-19 | Published online: 13 Nov 2012

References

  • Moore DS. Instrumentation for trace detection of high explosives. Rev Sci Instrum. 2004;75(8):2499.
  • Marshall M, Oxley JC. Aspects of explosives detection. The Netherlands: Elsevier; 2009.
  • Mullen C, Huestis D, Coggiola M, Oser H. Laser photoionization of triacetone triperoxide (TATP) by femtosecond and nanosecond laser pulses. Int JMass Spectrom. 2006;252(1):69–72.
  • Mullen C, Irwin A, Pond BV, Huestis DL, Coggiola MJ, Oser H. Detection of explosives and explosives-related compounds by single photon laser ionization time-of-flight mass spectrometry. Anal Chem. 2006;78(11):3807–3814.
  • Cabalo J, Sausa R. Trace detection of explosives with low vapor emissions by laser surface photofragmentation-fragment detection spectroscopy with an improved ionization probe. Appl Opt. 2005;44(6):1084–1091.
  • Oxley JC, Smith JL, Kirschenbaum LJ, Marimganti S, Vadlamannati S. Detection of explosives in hair using ion mobility spectrometry. J Forensic Sci. 2008;53(3):690–693.
  • Creaser CS, Griffiths JR, Bramwell CJ, Noreen S, Hill CA, Thomas CLP Ion mobility spectrometry: a review. Part 1. Structural analysis by mobility measurement. Analyst. 2004;129(11):984–994.
  • Borch T, Gerlach R. Use of reversed-phase high-performance liquid chromatography-diode array detection for complete separation of 2,4,6-trinitrotoluene metabolites and EPA Method 8330 explosives: influence of temperature and an ion-pair reagent. J Chromatogr A. 2004;1022(1):83–94.
  • Schulte-Ladbeck R, Kolla P, Karst U. Trace Analysis of Peroxide-Based Explosives. Anal Chem. 2003;75(4):731–735.
  • Hilmi A, Luong JH. Electrochemical detectors prepared by electroless deposition for microfabricated electrophoresis chips. Anal Chem. 2000;72(19):4677–4682.
  • Crowson A, Beardah MS. Development of an LC/MS method for the trace analysis of hexamethylenetriperoxidediamine (HMTD). Analyst. 2001;126(10):1689–1693.
  • Tuschel DD, Mikhonin AV, Lemoff BE, Asher SA. Deep Ultraviolet Resonance Raman Excitation Enables Explosives Detection. Appl Spectrosc. 2010;64(4):425–432.
  • Lin H, Suslick KS. A Colorimetric SensorArray for Detection ofTriacetone Triperoxide Vapor. J Am Chem Soc. 2010;132(44):15519–15521.
  • Reynolds J, Nunes P, Whipple R, Alcaraz A. On-site analysis of explosives in various matrices. In: Schubert H, Kuznetsov A, editors. Detection and Disposal of Improvised Explosives. The Netherlands: Springer; 2006:27–32.
  • Schulte-Ladbeck R, Kolla P, Karst U. A field test for the detection of peroxide-based explosives. Analyst. 2002;127(9):1152–1154.
  • Girotti S, Ferri E, Maiolini E, et al. A quantitative chemiluminescent assay for analysis of peroxide-based explosives. Anal Bioanal Chem. 2011;400(2):313–320.
  • McQuade DT, Pullen AE, Swager TM. Conjugated polymer-based chemical sensors. Chem Rev. 2000;100(7):2537–2574.
  • Sanchez JC, Trogler WC. Efficient blue-emitting silafluorene– fluorene-conjugated copolymers: selective turn-off/turn-on detection of explosives. J Mater Chem. 2008;18(26):3143–3156.
  • Sanchez JC, DiPasquale AG, Rheingold AL, Trogler WC. Synthesis, Luminescence Properties, and Explosives Sensing with 1,1-Tetraphenylsilole-and 1,1-Silafluorene-vinylene Polymers. Chem Mater. 2007;19(26):6459–6470.
  • Toal SJ, Magde D, Trogler WC. Luminescent oligo (tetraphenyl) silole nanoparticles as chemical sensors for aqueous TNT. Chem Commun (Camb). 2005;(43):5465–5467.
  • Sohn H, Sailor MJ, Magde D, Trogler WC. Detection of nitroaromatic explosives based on photoluminescent polymers containing metalloles. J Am Chem Soc. 2003;125(13):3821–3830.
  • Martinez HP, Grant CD, Reynolds JG, Trogler WC. Silica anchored fluorescent organosilicon polymers for explosives separation and detection. J Mater Chem. 2012;22(7):2908–2914.
  • Tu R, Liu B, Wang Z, et al. Amine-capped ZnS-Mn2+ nanocrystals for fluorescence detection of trace TNT explosive. Anal Chem. 2008;80(9):3458–3465.
  • Chen Y, Chen Z, He Y, et al. L-cysteine-capped CdTe QD-based sensor for simple and selective detection of trinitrotoluene. Nanotechnology. 2010;21(12):125502.
  • Xia Y, Song L, Zhu C. Turn-On and Near-Infrared Fluorescent Sensing for 2,4,6-Trinitrotoluene Based on Hybrid (Gold Nanorod)-(Quantum Dots) Assembly. Anal Chem. 2011;83(4):1401–1407.
  • Zhang K, Zhou H, Mei Q, et al. Instant Visual Detection of Trinitrotoluene Particulates on Various Surfaces by Ratiometric Fluorescence of Dual-Emission Quantum Dots Hybrid. J Am Chem Soc. 2011;133(22):8424–8427.
  • Newhouse RJ, Wang H, Hensel JK, Wheeler DA, Zou S, Zhang JZ. Coherent Vibrational Oscillations of Hollow Gold Nanospheres. J Phys Chem Lett. 2011;2(3):228–235.
  • Cooper JK, Ling Y, Longo C, Li Y, Zhang JZ. Effects of Hydrogen Treatment and Air Annealing on Ultrafast Charge Carrier Dynamics in ZnO Nanowires Under in Situ Photoelectrochemical Conditions. J Phys Chem C. 2012;116(33):17360–17368.
  • Strehmel B, Sarker AM, Detert H. The influence of sigma and pi acceptors on two-photon absorption and solvatochromism of dipolar and quadrupolar unsaturated organic compounds. Chemphyschem. 2003;4(3):249–259.
  • Becke AD. Density-functional thermochemistry. IV. A new dynamical correlation functional and implications for exact-exchange mixing. J Chem Phys. 1996;104(3):1040–1046.
  • Yanai T, Tew DP, Handy NC. A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett. 2004;393(1–3):51–57.
  • Chai JD, Head-Gordon M. Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys Chem Chem Phys. 2008;10(44):6615–6620.
  • Grimme S. Semiempirical hybrid density functional with perturbative second-order correlation. J Chem Phys. 2006;124(3):034108.
  • Byrd EF, Rice BM. Improved Prediction of Heats of Formation of Energetic Materials Using Quantum Mechanical Calculations. J Phys Chem A. 2006;110(3):1005–1013.
  • Chakraborty D, Muller RP, Dasgupta S, Goddard WA. A detailed model for the decomposition of nitramines: RDX and HMX. Journal of Computer-Aided Materials Design. 2001;8(2):203–212.
  • Chakraborty D, Muller RP, Dasgupta S, Goddard III WA. Mechanism for unimolecular decomposition of HMX (1,3,5,7-tetranitro-1, 3,5,7-tetrazocine), an ab initio study. J Phys Chem A. 2001 ;105(8): 1302–1314.
  • Dubnikova F, Kosloff R, Almog J, et al. Decomposition of triacetone triperoxide is an entropic explosion. J Am Chem Soc. 2005;127(4):1146–1159.
  • Schwabe T, Grimme S. Double-hybrid density functionals with long-range dispersion corrections: higher accuracy and extended applicability. Phys Chem Chem Phys. 2007;9(26):3397–3406.
  • Zhao Y, Lynch BJ, Truhlar DG. Multi-coefficient extrapolated density functional theory for thermochemistry and thermochemical kinetics. Phys Chem Chem Phys. 2005;7(1):43–52.
  • Zhao Y, Lynch BJ, Truhlar DG. Doubly hybrid meta DFT: New multi-coefficient correlation and density functional methods for thermochemistry and thermochemical kinetics. J Phys Chem A. 2004;108(21):4786–4791.
  • Montgomery JA, Frisch MJ, Ochterski JW, Petersson GA. A complete basis set model chemistry. VI. Use of density functional geometries and frequencies. J Chem Phys. 1999;110(6):2822–2827.
  • Wroblewski T, Hubisz K, Antonowicz J. Theoretical study of electron affinities for selected diatomic molecules. Optica Applicata. 2010;40(3):601–608.
  • Frisch MJ, Trucks GW, Schlegel HB, et al. Gaussian 09. 2009.
  • Lewars EG. Computational Chemistry: Introduction to the Theory and Applications of Molecular and Quantum Mechanics. 2nd ed. New York: Springer; 2011.
  • Zhan C-G, Nichols JA, Dixon DA. Ionization Potential, Electron Affinity, Electronegativity, Hardness, and Electron Excitation Energy: Molecular Properties from Density Functional Theory Orbital Energies. J Phys Chem A. 2003;107(20):4184–4195.
  • Amovilli C, March NH, Bogar F, Gal T. Use of ab initio methods to classify four existing energy density functionals according to their possible variational validity. Phys Lett A. 2009;373(35):3158–3160.
  • Zhang G, Musgrave CB. Comparison of DFT Methods for Molecular Orbital Eigenvalue Calculations. J Phys Chem A. 2007;111(8):1554–1561.
  • Stowasser R, Hoffmann R. What do the Kohn-Sham orbitals and eigenvalues mean? J Am Chem Soc. 1999;121(14):3414–3420.
  • Ghosh D, Golan A, Takahashi LK, Krylov AI, Ahmed M. A VUV Photoionization and Ab Initio Determination of the Ionization Energy of a Gas Phase Sugar (Deoxyribose). J Phys Chem Lett. 2012;3(1):97–101.
  • Langford ML, Todd JFJ. Negative-ion fragmentation pathways in 2,4,6-trinitrotoluene. Org Mass Spectrom. 1993;28(7):773–779.
  • Potapov VK, Kardash IE, Sorokin VV, Sokolov SA, Evlasheva TI. Photoionization of Heteroaromatic Compounds. Khim. Vys. Energ. 1972;6:392.
  • Foster R. Organic Charge-Transfer Complexes. New York: Academic Press; 1969.
  • Briegleb G. Electron Affinity of Organic Molecules. Angew Chem Int Ed Engl. 1964;3(9):617–632.