488
Views
1
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Alginate Beads as a Promising Tool for Successful Production of Viable and Pluripotent Human-Induced Pluripotent Stem Cells in a 3D Culture System

ORCID Icon, , ORCID Icon, &
Pages 61-73 | Received 06 Apr 2023, Accepted 13 Jun 2023, Published online: 28 Sep 2023

References

  • Lewitzky M, Yamanaka S. Reprogramming somatic cells towards pluripotency by defined factors. Curr Opin Biotechnol. 2007;18:467–473. doi:10.1016/j.copbio.2007.09.007
  • Lei Y, Schaffer DV. A fully defined and scalable 3D culture system for human pluripotent stem cell expansion and differentiation. Proc Natl Acad Sci USA. 2013;110:E5039–E5048. doi:10.1073/pnas.1309408110
  • Wu X, Su J, Wei J, Jiang N, Ge X. Recent advances in three-dimensional stem cell culture systems and applications. Stem Cells Int. 2021;2021:1–13. doi:10.1155/2021/9477332
  • Chaicharoenaudomrung N, Kunhorm P, Noisa P. Three-dimensional cell culture systems as an in vitro platform for cancer and stem cell modeling. World J Stem Cells. 2019;11(12):1065–1083. doi:10.4252/wjsc.v11.i12.1065
  • Bluhmki T, Traub S, Müller A-K, et al. Functional human iPSC-derived alveolar-like cells cultured in a miniaturized 96-Transwell air–liquid interface model. Sci Rep. 2021;11(1). doi:10.1038/s41598-021-96565-4
  • Kinney MA, Sargent CY, McDevitt TC. The multiparametric effects of hydrodynamic environments on stem cell culture. Tissue Eng Part B Rev. 2011;17:249–262. doi:10.1089/ten.teb.2011.0040
  • Chowdhury F, Li Y, Poh YC, Yokohama-Tamaki T, Wang N, Tanaka TS. Soft substrates promote homogeneous self-renewal of embryonic stem cells via downregulating cell-matrix tractions. PLoS One. 2010;5(12):e15655. doi:10.1371/journal.pone.0015655
  • Hwang YS, Cho J, Tay F, et al. The use of murine embryonic stem cells, alginate encapsulation, and rotary microgravity bioreactor in bone tissue engineering. Biomaterials. 2009;30:499–507. doi:10.1016/j.biomaterials.2008.07.028
  • Randle WL, Cha JM, Hwang YS, et al. Integrated 3-dimensional expansion and osteogenic differentiation of murine embryonic stem cells. Tissue Eng. 2007;13:2957–2970. doi:10.1089/ten.2007.0072
  • Orive G, Hernández RM, Gascón AR, et al. Cell encapsulation: promise and progress. Nat Med. 2003;9:104–107. doi:10.1038/nm0103-104
  • Dean SK, Yulyana Y, Williams G, Sidhu KS, Tuch BE. Differentiation of encapsulated embryonic stem cells after transplantation. Transplantation. 2006;82:1175–1184. doi:10.1097/01.tp.0000239518.23354.64
  • Batorsky A, Liao J, Lund AW, Plopper GE, Stegemann JP. Encapsulation of adult human mesenchymal stem cells within collagen-agarose microenvironments. Biotechnol Bioeng. 2005;92:492–500. doi:10.1002/bit.20614
  • Wang X, Wang W, Ma J, Guo X, Yu X, Ma X. Proliferation and differentiation of mouse embryonic stem cells in APA microcapsule: a model for studying the interaction between stem cells and their niche. Biotechnol Prog. 2006;22(3):791–800. doi:10.1021/bp050386n
  • Dang SM, Gerecht-Nir S, Chen J, Itskovitz-Eldor J, Zandstra PW. Controlled, scalable embryonic stem cell differentiation culture. Stem Cells. 2004;22:275–282. doi:10.1634/stemcells.22-3-275
  • Liu TL, Song K, Song K, et al. Culture of neural stem cells in calcium alginate beads. Biotechnol Prog. 2006;22:1683–1689. doi:10.1002/bp060185z
  • Serra M, Brito C, Correia C, Alves PM. Process engineering of human pluripotent stem cells for clinical application. Trends Biotechnol. 2012;30:350–359. doi:10.1016/j.tibtech.2012.03.003
  • Unger C, Skottman H, Blomberg P, Dilber MS, Hovatta O. Good manufacturing practice and clinical-grade human embryonic stem cell lines. Hum Mol Genet. 2008;17:R48‒R53. doi:10.1093/hmg/ddn079
  • Watanabe K, Ueno M, Kamiya D, et al. A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nat Biotechnol. 2007;25:681–686. doi:10.1038/nbt1310
  • Alsobaie S, Alsobaie T, Mantalaris S. Rho-associated protein kinase inhibitor and hypoxia synergistically enhance the self-renewal, survival rate, and proliferation of human stem cells. Stem Cells Cloning. 2022;15(7):43–52. doi:10.2147/SCCAA.S365776
  • Alsobaie T. Generation of functional mature type II pneumocytes from human induced pluripotent stem cells in 3D dynamic culture [PhD Thesis]. London, UK: Imperial College London; 2019. doi: 10.25560/87943.
  • Hu Q, Khanna P, Wong BSE, et al. Oxidative stress promotes exit from the stem cell state and spontaneous neuronal differentiation. Oncotarget. 2018;9:4223–4238. doi:10.18632/oncotarget.23786
  • Mecham RP. Overview of extracellular matrix. Curr Protoc Cell Biol. 2001;10:1. PMID: 18228295. doi:10.1002/0471143030.cb1001s00
  • Alsobaie S Characterisation of encapsulated embryonic stem cells using silac-based proteomics [Dissertation]. London, UK: Imperial College London; 2016. doi: 10.25560/40561.
  • Siti-Ismail N, Bishop AE, Polak JM, Mantalaris A. The benefit of human embryonic stem cell encapsulation for prolonged feeder-free maintenance. Biomaterials. 2008;29:3946–3952. doi:10.1016/j.biomaterials.2008.04.027
  • Li YJ, Chung EH, Rodriguez RT, Firpo MT, Healy KE. Hydrogels as artificial matrices for human embryonic stem cell self-renewal. J Biomed Mater Res A. 2006;79:1–5. doi:10.1002/jbm.a.30732
  • Gerecht S, Burdick JA, Ferreira LS, Townsend SA, Langer R, Vunjak-Novakovic G. Hyaluronic acid hydrogel for controlled self-renewal and differentiation of human embryonic stem cells. Proc Natl Acad Sci USA. 2007;104:11298–11303. doi:10.1073/pnas.0703723104
  • Jha R, Wu Q, Singh M, et al. Simulated microgravity and 3D culture enhance induction, viability, proliferation and differentiation of cardiac progenitors from human pluripotent stem cells. Sci Rep. 2016;6:30956. doi:10.1038/srep30956
  • Grimm D, Wehland M, Pietsch J, et al. Growing tissues in real and simulated microgravity: new methods for tissue engineering. Tissue Eng Part B Rev. 2014;20:555–566. doi:10.1089/ten.teb.2013.0704
  • Yuge L, Kajiume T, Tahara H, et al. Microgravity potentiates stem cell proliferation while sustaining the capability of differentiation. Stem Cells Dev. 2006;15:921–929. doi:10.1089/scd.2006.15.921
  • Han J, Chen L, Luo G, Dai B, Wang X, Dai J. Three-dimensional culture may promote cell reprogramming. Organogenesis. 2013;9:118–120. doi:10.4161/org.24708
  • Claassen DA, Desler MM, Rizzino A. ROCK inhibition enhances the recovery and growth of cryopreserved human embryonic stem cells and human induced pluripotent stem cells. Mol Reprod Dev. 2009;76:722–732. doi:10.1002/mrd.21021
  • Chapman S, McDermott DH, Shen K, Jang MK, McBride AA. The effect of Rho kinase inhibition on long-term keratinocyte proliferation is rapid and conditional. Stem Cell Res Ther. 2014;5:60. doi:10.1186/scrt449
  • Piltti J, Bygdell J, Fernández-Echevarría C, Marcellino D, Lammi MJ. Rho-kinase inhibitor Y-27632 and hypoxia synergistically enhance chondrocytic phenotype and modify S100 protein profiles in human chondrosarcoma cells. Sci Rep. 2017;7:3708. doi:10.1038/s41598-017-03958-5
  • Park JH, Ryu JM, Han HJ. Involvement of caveolin-1 in fibronectin-induced mouse embryonic stem cell proliferation: role of FAK, RhoA, PI3K/Akt, and ERK 1/2 pathways. J Cell Physiol. 2011;226:267–275. doi:10.1002/jcp.22338
  • Yue B. Biology of the extracellular matrix: an overview. J Glaucoma. 2014;23(8 Suppl 1):S20–S23. doi:10.1097/IJG.0000000000000108
  • Laperle A, Hsiao C, Lampe M, et al. α-5 Laminin synthesized by human pluripotent stem cells promotes self-renewal. Stem Cell Rep. 2015;5:195–206. doi:10.1016/j.stemcr.2015.06.009
  • Domogatskaya A, Rodin S, Tryggvason K. Functional diversity of laminins. Annu Rev Cell Dev Biol. 2012;28:523–553. doi:10.1146/annurev-cellbio-101011-155750
  • Ahmed M, Ffrench-Constant C. Extracellular matrix regulation of stem cell behavior. Curr Stem Cell Rep. 2016;2:197–206. doi:10.1007/s40778-016-0056-2
  • Sevilla CA, Dalecki D, Hocking DC. Regional fibronectin and collagen fibril co-assembly directs cell proliferation and microtissue morphology. PLoS One. 2013;8:e77316. doi:10.1371/journal.pone.0077316
  • García AJ, Vega MD, Boettiger D. Modulation of cell proliferation and differentiation through substrate-dependent changes in fibronectin conformation. Mol Biol Cell. 1999;10:785–798. doi:10.1091/mbc.10.3.785
  • Rodin S, Antonsson L, Niaudet C, et al. Clonal culturing of human embryonic stem cells on laminin-521/E-cadherin matrix in defined and xeno-free environment. Nat Commun. 2014;5:3195. doi:10.1038/ncomms4195
  • Ludwig TE, Levenstein ME, Jones JM, et al. Derivation of human embryonic stem cells in defined conditions. Nat Biotechnol. 2006;24:185–187. doi:10.1038/nbt1177
  • Hosseinkhani H, Hosseinkhani M, Gabrielson NP, Pack DW, Khademhosseini A, Kobayashi H. DNA nanoparticles encapsulated in 3D tissue-engineered scaffolds enhance osteogenic differentiation of mesenchymal stem cells. J Biomed Mater Res A. 2008;85:47–60. doi:10.1002/jbm.a.31327
  • Farias E, Lu M, Li X, Schnapp LM. Integrin alpha8beta1-fibronectin interactions promote cell survival via PI3 kinase pathway. Biochem Biophys Res Commun. 2005;329:305–311. doi:10.1016/j.bbrc.2005.01.125
  • Forristal CE, Wright KL, Hanley NA, Oreffo ROC, Houghton FD. Hypoxia inducible factors regulate pluripotency and proliferation in human embryonic stem cells cultured at reduced oxygen tensions. Reproduction. 2010;139:85–97. doi:10.1530/REP-09-0300
  • Pimton P, Lecht S, Stabler CT, Johannes G, Schulman ES, Lelkes SI. Hypoxia enhances differentiation of mouse embryonic stem cells into definitive endoderm and distal lung cells. Stem Cells Dev. 2015;24:663–676. doi:10.1089/scd.2014.0343
  • Hawkins KE, Sharp TV, McKay TR. The role of hypoxia in stem cell potency and differentiation. Regen Med. 2013;8:771–782. doi:10.2217/rme.13.71
  • Yasmin R, Shah M, Khan SA, Ali R. Gelatin nanoparticles: a potential candidate for medical applications. Nanotechnol Rev. 2017;6(2). doi:10.1515/ntrev-2016-0009
  • Rawat S, Sharma Y, Majood M, Mohanty S. 3D Culturing of Stem Cells: An Emerging Technique for Advancing Fundamental Research in Regenerative Medicine. IntechOpen; 2023. doi:10.5772/intechopen.109671
  • Jensen C, Teng Y. Is it time to start transitioning from 2D to 3D cell culture? Front Molec Bio. 2020;7. doi:10.3389/fmolb.2020.00033