238
Views
1
CrossRef citations to date
0
Altmetric
Original Research

Molecular Genetic Screening of Neonatal Intensive Care Units: Hyperbilirubinemia as an Example

ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon
Pages 39-48 | Published online: 18 May 2022

References

  • Moreno MA. Newborn screening. JAMA Pediatr. 2016;170(6):628. doi:10.1001/jamapediatrics.2015.2519
  • Ceyhan-Birsoy O, Murry JB, Machini K, et al. Interpretation of genomic sequencing results in healthy and ill newborns: results from the BabySeq project. Am J Hum Genet. 2019;104(1):76–93. doi:10.1016/j.ajhg.2018.11.016
  • Adhikari AN, Gallagher RC, Wang Y, et al. The role of exome sequencing in newborn screening for inborn errors of metabolism. Nat Med. 2020;26(9):1392–1397. doi:10.1038/s41591-020-0966-5
  • Roman TS, Crowley SB, Roche MI, et al. Genomic sequencing for newborn screening: results of the NC NEXUS project. Am J Hum Genet. 2020;107(4):596–611. doi:10.1016/j.ajhg.2020.08.001
  • Willig LK, Petrikin JE, Smith LD, et al. Whole-genome sequencing for identification of Mendelian disorders in critically ill infants: a retrospective analysis of diagnostic and clinical findings. Lancet Respir Med. 2015;3(5):377–387. doi:10.1016/S2213-2600(15)00139-3
  • Hao C, Guo R, Hu X, et al. Newborn screening with targeted sequencing: a multicenter investigation and a pilot clinical study in China. J Genet Genom. 2021;49:13–19. doi:10.1016/j.jgg.2021.08.008
  • Wang H, Yang Y, Zhou L, Wang Y, Long W, Yu B. NeoSeq: a new method of genomic sequencing for newborn screening. Orphanet J Rare Dis. 2021;16(1):481. doi:10.1186/s13023-021-02116-5
  • Borghesi A, Mencarelli MA, Memo L, et al. Intersociety policy statement on the use of whole-exome sequencing in the critically ill newborn infant. Ital J Pediatr. 2017;43(1):100. doi:10.1186/s13052-017-0418-0
  • Wojcik MH, Zhang T, Ceyhan-Birsoy O, et al. Discordant results between conventional newborn screening and genomic sequencing in the BabySeq project. Genet Med. 2021;23:1372–1375. doi:10.1038/s41436-021-01146-5
  • Abbey P, Kandasamy D, Naranje P. Neonatal jaundice. Indian J Pediatr. 2019;86(9):830–841. doi:10.1007/s12098-019-02856-0
  • Olusanya BO, Teeple S, Kassebaum NJ. The contribution of neonatal jaundice to global child mortality: findings from the GBD 2016 study. Pediatrics. 2018;141(2). doi:10.1542/peds.2017-1471
  • Amin SB, Smith T, Timler G. Developmental influence of unconjugated hyperbilirubinemia and neurobehavioral disorders. Pediatr Res. 2019;85(2):191–197. doi:10.1038/s41390-018-0216-4
  • Sgro M, Campbell D, Shah V. Incidence and causes of severe neonatal hyperbilirubinemia in Canada. CMAJ. 2006;175(6):587–590. doi:10.1503/cmaj.060328
  • Rets A, Clayton AL, Christensen RD, Agarwal AM. Molecular diagnostic update in hereditary hemolytic anemia and neonatal hyperbilirubinemia. Int J Lab Hematol. 2019;41(Suppl 1):95–101. doi:10.1111/ijlh.13014
  • Zhou J, Yang C, Zhu W, et al. Identification of genetic risk factors for neonatal hyperbilirubinemia in Fujian Province, Southeastern China: a case-control study. Biomed Res Int. 2018;2018:7803175. doi:10.1155/2018/7803175
  • Wu XJ, Zhong DN, Xie XZ, Ye DZ, Gao ZY. UGT1A1 gene mutations and neonatal hyperbilirubinemia in Guangxi Heiyi Zhuang and Han populations. Pediatr Res. 2015;78(5):585–588. doi:10.1038/pr.2015.134
  • Halis H, Ergin H, Köseler A, Atalay E. The role of UGT1A1 promoter polymorphism and exon-1 mutations in neonatal jaundice. J Matern Fetal Neonatal Med. 2017;30(22):2658–2664. doi:10.1080/14767058.2016.1261105
  • Tiwari PK, Bhutada A, Agarwal R, Basu S, Raman R, Kumar A. UGT1A1 gene variants and clinical risk factors modulate hyperbilirubinemia risk in newborns. J Perinatol. 2014;34(2):120–124. doi:10.1038/jp.2013.140
  • Carvalho CG, Castro SM, Santin AP, de Azevedo LA, Pereira ML, Giugliani R. Polymorphic variants of UGT1A1 in neonatal jaundice in southern Brazil. J Trop Pediatr. 2010;56(5):366–367. doi:10.1093/tropej/fmp131
  • Long J, Zhang S, Fang X, Luo Y, Liu J. Neonatal hyperbilirubinemia and Gly71Arg mutation of UGT1A1 gene: a Chinese case-control study followed by systematic review of existing evidence. Acta Paediatr. 2011;100(7):966–971. doi:10.1111/j.1651-2227.2011.02176.x
  • Bai J, Luo L, Liu S, et al. Combined effects of UGT1A1 and SLCO1B1 variants on Chinese adult mild unconjugated hyperbilirubinemia. Front Genet. 2019;10:1073. doi:10.3389/fgene.2019.01073
  • Min J, Jie L, Caiyun Y, Ying L, Xuefang Y. Gene mutation in neonatal jaundice - mutations in UGT1A1 and OATP2 genes. Indian J Pediatr. 2016;83(7):723–725. doi:10.1007/s12098-016-2064-8
  • Amandito R, Rohsiswatmo R, Halim M, Tirtatjahja V, Malik A. SLCO1B1 c.388A > G variant incidence and the severity of hyperbilirubinemia in Indonesian neonates. BMC Pediatr. 2019;19(1):212. doi:10.1186/s12887-019-1589-1
  • Liu J, Long J, Zhang S, Fang X, Luo Y. The impact of SLCO1B1 genetic polymorphisms on neonatal hyperbilirubinemia: a systematic review with meta-analysis. J Pediatr. 2013;89(5):434–443. doi:10.1016/j.jped.2013.01.008
  • Kaplan M, Wong RJ, Stevenson DK. Heme oxygenase-1 promoter polymorphisms: do they modulate neonatal hyperbilirubinemia? J Perinatol. 2017;37(8):901–905. doi:10.1038/jp.2017.6
  • Urschel S, West LJ. ABO-incompatible heart transplantation. Curr Opin Pediatr. 2016;28(5):613–619. doi:10.1097/MOP.0000000000000398
  • American Academy of Pediatrics. Management of hyperbilirubinemia in the newborn infant 35 or more weeks of gestation. Pediatrics. 2004;114(1):297–316. doi:10.1542/peds.114.1.297
  • Yang Y, Wang L, Wang B, Liu S, Yu B, Wang T. Application of next-generation sequencing following tandem mass spectrometry to expand newborn screening for inborn errors of metabolism: a multicenter study. Front Genet. 2019;10:86. doi:10.3389/fgene.2019.00086
  • Shang X, Peng Z, Ye Y, et al. Rapid targeted next-generation sequencing platform for molecular screening and clinical genotyping in subjects with hemoglobinopathies. EBioMedicine. 2017;23:150–159. doi:10.1016/j.ebiom.2017.08.015
  • Riggs ER, Andersen EF, Cherry AM, et al. Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020;22(2):245–257. doi:10.1038/s41436-019-0686-8
  • Guan Q, Balciuniene J, Cao K, et al. AUDIOME: a tiered exome sequencing-based comprehensive gene panel for the diagnosis of heterogeneous nonsyndromic sensorineural hearing loss. Genet Med. 2018;20(12):1600–1608. doi:10.1038/gim.2018.48
  • Koohiyan M, Koohian F, Azadegan-Dehkordi F. GJB2-related hearing loss in central Iran: review of the spectrum and frequency of gene mutations. Ann Hum Genet. 2020;84(2):107–113. doi:10.1111/ahg.12354
  • Yang H, Luo H, Zhang G, Zhang J, Peng Z, Xiang J. A multiplex PCR amplicon sequencing assay to screen genetic hearing loss variants in newborns. BMC Med Genomics. 2021;14(1):61. doi:10.1186/s12920-021-00906-1
  • Lin YF, Lin HC, Tsai CL, Hsu YC. GJB2 mutation spectrum in the Taiwanese population and genotype-phenotype comparisons in patients with hearing loss carrying GJB2 c.109G>A and c.235delC mutations.. Hear Res. 2020;413:108135. doi:10.1016/j.heares.2020.108135
  • Yu B, Long W, Yang Y. Newborn screening and molecular profile of congenital hypothyroidism in a Chinese population. Front Genet. 2018;9:509. doi:10.3389/fgene.2018.00509
  • Long W, Zhou L, Wang Y, Liu J, Wang H, Yu B. Complicated relationship between genetic mutations and phenotypic characteristics in transient and permanent congenital hypothyroidism: analysis of pooled literature data. Int J Endocrinol. 2020;2020:6808517. doi:10.1155/2020/6808517
  • de Castro MJ, González-Vioque E, Barbosa-Gouveia S, et al. Rapid phenotype-driven gene sequencing with the NeoSeq panel: a diagnostic tool for critically ill newborns with suspected genetic disease. J Clin Med. 2020;9(8):2362. doi:10.3390/jcm9082362
  • Bamborschke D, Özdemir Ö, Kreutzer M, et al. Ultra-rapid emergency genomic diagnosis of Donahue syndrome in a preterm infant within 17 hours. Am J Med Genet A. 2021;185(1):90–96. doi:10.1002/ajmg.a.61917
  • Dimmock DP, Clark MM, Gaughran M, et al. An RCT of rapid genomic sequencing among seriously ill infants results in high clinical utility, changes in management, and low perceived harm. Am J Hum Genet. 2020;107(5):942–952. doi:10.1016/j.ajhg.2020.10.003
  • Lunke S, Eggers S, Wilson M, et al. Feasibility of ultra-rapid exome sequencing in critically ill infants and children with suspected monogenic conditions in the Australian public health care system. JAMA. 2020;323(24):2503–2511. doi:10.1001/jama.2020.7671
  • Zheng Y, Wang J, Liang X, et al. Epidemiology, evolutionary origin, and malaria-induced positive selection effects of G6PD-deficient alleles in Chinese populations. Mol Genet Genom Med. 2020;8(12):e1540. doi:10.1002/mgg3.1540
  • Liu H, Liu W, Tang X, Wang T. Association between G6PD deficiency and hyperbilirubinemia in neonates: a meta-analysis. Pediatr Hematol Oncol. 2015;32(2):92–98. doi:10.3109/08880018.2014.887803
  • Liu Z, Yu C, Li Q, et al. Chinese newborn screening for the incidence of G6PD deficiency and variant of G6PD gene from 2013 to 2017. Hum Mutat. 2020;41(1):212–221. doi:10.1002/humu.23911
  • Gao J, Lin S, Chen S, et al. Molecular characterization of glucose-6-phosphate dehydrogenase deficiency in the Shenzhen population. Hum Hered. 2020;85(3–6):110–116. doi:10.1159/000516808