188
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Evaluating the Frequencies of CNOT3, GRIA1, NFATC2, and PNPLA3 Variant Alleles and Their Association with L-Asparaginase Hypersensitivity in Pediatric Acute Lymphoblastic Leukemia in Addis Ababa, Ethiopia

ORCID Icon, ORCID Icon, , , &
Pages 131-137 | Received 21 Feb 2023, Accepted 13 Jun 2023, Published online: 02 Aug 2023

References

  • Batool T, Makky EA, Jalal M, Yusoff MM. A comprehensive review on l-asparaginase and its applications. Appl Biochem Biotechnol. 2016;178(5):900–923. doi:10.1007/s12010-015-1917-3
  • Fu CH, Sakamoto KM. PEG-asparaginase. Expert Opin Pharmacother. 2007;8(12):1977–1984. doi:10.1517/14656566.8.12.1977
  • Pieters R, Hunger SP, Boos J, et al. L-asparaginase treatment in acute lymphoblastic leukemia: a focus on Erwinia asparaginase. Cancer. 2011;117(2):238–249. doi:10.1002/cncr.25489
  • Brumano LP, da Silva FVS, Costa-Silva TA, et al. Development of L-asparaginase biobetters: current research status and review of the desirable quality profiles. Front Bioeng Biotechnol. 2019;6:212. doi:10.3389/fbioe.2018.00212
  • Egler RA, Ahuja SP, Matloub Y. L-asparaginase in the treatment of patients with acute lymphoblastic leukemia. J Pharmacol Pharmacother. 2016;7(2):62–71. doi:10.4103/0976-500X.184769
  • El-Nagga NEA, El-Ewasy SM, El-Shweihy NM. Microbial L-asparaginase as a potential therapeutic agent for the treatment of acute lymphoblastic leukemia: the pros and cons. Int J Pharmacol. 2014;10(4):182–199. doi:10.3923/ijp.2014.182.199
  • Bade NA, Lu C, Patzke CL, et al. Optimizing pegylated asparaginase use: an institutional guideline for dosing, monitoring, and management. J Oncol Pharm Pract. 2020;26(1):74–92. doi:10.1177/1078155219838316
  • Burke MJ. How to manage asparaginase hypersensitivity in acute lymphoblastic leukemia. Future Oncol. 2014;10(16):2615–2627. doi:10.2217/fon.14.138
  • Hijiya N, van der Sluis IM. Asparaginase-associated toxicity in children with acute lymphoblastic leukemia. Leuk Lymphoma. 2016;57(4):748–757. doi:10.3109/10428194.2015.1101098
  • Lopez-Santillan M, Iparraguirre L, Martin-Guerrero I, Gutierrez-Camino A, Garcia-Orad A. Review of pharmacogenetics studies of L-asparaginase hypersensitivity in acute lymphoblastic leukemia points to variants in the GRIA1 gene. Drug Metab Pers Ther. 2017;32(1):1–9. doi:10.1515/dmpt-2016-0033
  • Abaji R, Krajinovic M. Pharmacogenetics of asparaginase in acute lymphoblastic leukemia. CDR. 2019. doi:10.20517/cdr.2018.24
  • Chen SH, Pei D, Yang W, et al. Genetic variations in GRIA1 on chromosome 5q33 related to asparaginase hypersensitivity. Clin Pharmacol Ther. 2010;88(2):191–196. doi:10.1038/clpt.2010.94
  • Rajić V, Debeljak M, Goričar K, Jazbec J. Polymorphisms in GRIA1 gene are a risk factor for asparaginase hypersensitivity during the treatment of childhood acute lymphoblastic leukemia. Leuk Lymphoma. 2015;56(11):3103–3108. doi:10.3109/10428194.2015.1020802
  • Højfeldt SG, Wolthers BO, Tulstrup M, et al. Genetic predisposition to PEG-asparaginase hypersensitivity in children treated according to NOPHO ALL2008. Br J Haematol. 2019;184(3):405–417. doi:10.1111/bjh.15660
  • Fernandez CA, Smith C, Yang W, et al. HLA-DRB1*07:01 is associated with a higher risk of asparaginase allergies. Blood. 2014;124(8):1266–1276. doi:10.1182/blood-2014-03-563742
  • Rathod S, Ramsey M, Finkelman FD, Fernandez CA. Genetic inhibition of NFATC2 attenuates asparaginase hypersensitivity in mice. Blood Adv. 2020;4(18):4406–4416. doi:10.1182/bloodadvances.2020002478
  • Krawczyk M, Liebe R, Lammert F. Toward genetic prediction of nonalcoholic fatty liver disease trajectories: PNPLA3 and beyond. Gastroenterology. 2020;158(7):1865–1880.e1. doi:10.1053/j.gastro.2020.01.053
  • Salari N, Darvishi N, Mansouri K, et al. Association between PNPLA3 rs738409 polymorphism and nonalcoholic fatty liver disease: a systematic review and meta-analysis. BMC Endocr Disord. 2021;21(1):125. doi:10.1186/s12902-021-00789-4
  • Liu Y, Fernandez C, Smith C, et al. Genome-wide study links PNPLA3 variant with elevated hepatic transaminase after acute lymphoblastic leukemia therapy. Clin Pharmacol Ther. 2017;102(1):131–140. doi:10.1002/cpt.629
  • Hunger SP, Sung L, Howard SC. Treatment strategies and regimens of graduated intensity for childhood acute lymphoblastic leukemia in low-income countries: a proposal. Pediatr Blood Cancer. 2009;52(5):559–565. doi:10.1002/pbc.21889
  • Vos HI, Guchelaar HJ, Gelderblom H, et al. Replication of a genetic variant in ACYP2 associated with cisplatin-induced hearing loss in patients with osteosarcoma. Pharmacogenet Genomics. 2016;26(5):243–247. doi:10.1097/FPC.0000000000000212
  • Kumagai H, Miyamoto-Mikami E, Hirata K, et al. ESR1 rs2234693 polymorphism is associated with muscle injury and muscle stiffness. Med Sci Sports Exerc. 2019;51(1):19–26. doi:10.1249/MSS.0000000000001750
  • Burke MJ, Zalewska-Szewczyk B. Hypersensitivity reactions to asparaginase therapy in acute lymphoblastic leukemia: immunology and clinical consequences. Future Oncol. 2022;18(10):1285–1299. doi:10.2217/fon-2021-1288
  • Zalewska-Szewczyk B, Andrzejewski W, Młynarski W, Jędrychowska-Dańska K, Witas H, Bodalski J. The anti-asparagines antibodies correlate with l -asparagines activity and may affect clinical outcome of childhood acute lymphoblastic leukemia. Leuk Lymphoma. 2007;48(5):931–936. doi:10.1080/10428190701292049
  • Silverman LB. Improved outcome for children with acute lymphoblastic leukemia: results of Dana-Farber consortium protocol 91-01. Blood. 2001;97(5):1211–1218. doi:10.1182/blood.V97.5.1211
  • Gottschalk Højfeldt S, Grell K, Abrahamsson J, et al. Relapse risk following truncation of pegylated asparaginase in childhood acute lymphoblastic leukemia. Blood. 2021;137(17):2373–2382. doi:10.1182/blood.2020006583
  • Ovalle BP, Azócar MM, Nicklas DC, Villarroel CM, Morales VJ. Hypersensitivity reactions associated with the use of asparaginase in children with acute lymphoblastic leukemia. Andes Pediatr. 2021;92(2):182. doi:10.32641/andespediatr.v92i2.2151
  • Panosyan EH, Seibel NL, Martin-Aragon S, et al. Asparaginase antibody and asparaginase activity in children with higher-risk acute lymphoblastic leukemia: childrens cancer group study CCG-1961. J Pediatr Hematol Oncol. 2004;26(4):217–226. doi:10.1097/00043426-200404000-00002
  • Kutszegi N, Semsei ÁF, Gézsi A, et al. Subgroups of paediatric acute lymphoblastic leukaemia might differ significantly in genetic predisposition to asparaginase hypersensitivity. PLoS One. 2015;10(10):e0140136. doi:10.1371/journal.pone.0140136
  • Dutta AK. Genetic factors affecting susceptibility to alcoholic liver disease in an Indian population. Ann Hepatol. 2013;12(6):901–907. doi:10.1016/S1665-2681(19)31295-5
  • Nischalke HD, Berger C, Luda C, et al. The PNPLA3 rs738409 148M/M genotype is a risk factor for liver cancer in alcoholic cirrhosis but shows no or weak association in hepatitis C cirrhosis. PLoS One. 2011;6(11):e27087. doi:10.1371/journal.pone.0027087
  • Manchiero C, da S NAK, Magri MC, et al. The rs738409 polymorphism of the PNPLA3 gene is associated with hepatic steatosis and fibrosis in Brazilian patients with chronic hepatitis C. BMC Infect Dis. 2017;17(1):780. doi:10.1186/s12879-017-2887-6
  • Romeo S, Kozlitina J, Xing C, et al. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat Genet. 2008;40(12):1461–1465. doi:10.1038/ng.257
  • Chen LZ, Xin YN, Geng N, Jiang M, Zhang DD, Xuan SY. PNPLA3 I148M variant in nonalcoholic fatty liver disease: demographic and ethnic characteristics and the role of the variant in nonalcoholic fatty liver fibrosis. WJG. 2015;21(3):794. doi:10.3748/wjg.v21.i3.794
  • Liu S, Gao C, Wu Y, et al. HLA-DRB1 *16:02 is associated with PEG-asparaginase hypersensitivity. Pharmacogenomics. 2021;22(17):1135–1142. doi:10.2217/pgs-2021-0107