128
Views
5
CrossRef citations to date
0
Altmetric
Review

Management Strategies of Patients with Neuromyelitis Optica Spectrum Disorder During the COVID-19 Pandemic Era

, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, , ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, & ORCID Icon show all
Pages 759-767 | Published online: 17 Aug 2020

References

  • Zhu N, Zhang D, Wang W, et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med. 2020;382(8):727–733. doi:10.1056/NEJMoa2001017
  • Yi Y, Lagniton PNP, Ye S, Li E, Xu R-H. COVID-19: what has been learned and to be learned about the novel coronavirus disease. Int J Biol Sci. 2020;16(10):1753. doi:10.7150/ijbs.45134
  • Wingerchuk DM, Banwell B, Bennett JL, et al. International consensus diagnostic criteria for neuromyelitis optica spectrum disorders. Neurology. 2015;85(2):177–189. doi:10.1212/WNL.0000000000001729
  • Chen G, Wu D, Guo W, et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. J Clin Invest. 2020;130(5):5. doi:10.1172/JCI137244
  • Kimbrough DJ, Fujihara K, Jacob A, et al. Treatment of neuromyelitis optica: review and recommendations. Mult Scler Relat Disord. 2012;1(4):180–187. doi:10.1016/j.msard.2012.06.002
  • Varrin‐Doyer M, Spencer CM, Schulze‐Topphoff U, et al. Aquaporin 4‐specific T cells in neuromyelitis optica exhibit a Th17 bias and recognize Clostridium ABC transporter. Ann Neurol. 2012;72(1):53–64. doi:10.1002/ana.23651
  • Uzawa A, Masahiro M, Kuwabara S. Cytokines and chemokines in neuromyelitis optica: pathogenetic and therapeutic implications. Brain Pathol. 2014;24(1):67–73. doi:10.1111/bpa.12097
  • Uzawa A, Mori M, Kuwabara S. Role of interleukin‐6 in the pathogenesis of neuromyelitis optica. Clin Exp Neuroimmunol. 2013;4(2):167–172. doi:10.1111/cen3.12024
  • Huda S, Whittam D, Bhojak M, Chamberlain J, Noonan C, Jacob A. Neuromyelitis optica spectrum disorders. Clin Med. 2019;19(2):169–176. doi:10.7861/clinmedicine.19-2-169
  • Channappanavar R, Perlman S. Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Seminars in Immunopathology. 2017;39(5):529–539. doi:10.1007/s00281-017-0629-x
  • Cao W, Li T. COVID-19: towards understanding of pathogenesis. Cell Res. 2020;30(5):367–369. doi:10.1038/s41422-020-0327-4
  • Sormani MP. An Italian programme for COVID-19 infection in multiple sclerosis. Lancet Neurol. 2020;19(6):481–482. doi:10.1016/S1474-4422(20)30147-2
  • Brownlee W, Bourdette D, Broadley S, Killestein J, Ciccarelli O. Treating multiple sclerosis and neuromyelitis optica spectrum disorder during the COVID-19 pandemic. Neurology. 2020;94(22):949–952. doi:10.1212/WNL.0000000000009507
  • Elsone L, Kitley J, Luppe S, et al. Long-term efficacy, tolerability and retention rate of azathioprine in 103 aquaporin-4 antibody-positive neuromyelitis optica spectrum disorder patients: a multicentre retrospective observational study from the UK. Multiple Sclerosis J. 2014;20(11):1533–1540. doi:10.1177/1352458514525870
  • Mealy MA, Wingerchuk DM, Palace J, Greenberg BM, Levy M. Comparison of relapse and treatment failure rates among patients with neuromyelitis optica: multicenter study of treatment efficacy. JAMA Neurol. 2014;71(3):324–330. doi:10.1001/jamaneurol.2013.5699
  • Wingerchuk DM, Lennon VA, Lucchinetti CF, Pittock SJ, Weinshenker BG. The spectrum of neuromyelitis optica. Lancet Neurol. 2007;6(9):805–815. doi:10.1016/S1474-4422(07)70216-8
  • Sherman E, Han MH. Acute and chronic management of neuromyelitis optica spectrum disorder. Curr Treat Options Neurol. 2015;17(11):48. doi:10.1007/s11940-015-0378-x
  • Kowarik MC, Soltys J, Bennett JL. The treatment of neuromyelitis optica. J Neuro Ophthalmol. 2014;34(1):70. doi:10.1097/WNO.0000000000000102
  • Freedman MS, Selchen D, Arnold DL, et al. Treatment optimization in MS: canadian MS Working Group updated recommendations. Canadian J Neurol Sci. 2013;40(3):307–323. doi:10.1017/S0317167100014244
  • Bonnan M, Valentino R, Olindo S, Mehdaoui H, Smadja D, Cabre P. Plasma exchange in severe spinal attacks associated with neuromyelitis optica spectrum disorder. Multiple Sclerosis J. 2009;15(4):487–492. doi:10.1177/1352458508100837
  • Bonnan M, Cabre P. Plasma exchange in severe attacks of neuromyelitis optica. Mult Scler Int. 2012;2012.
  • Keegan M, Pineda AA, McClelland RL, Darby CH, Rodriguez M, Weinshenker BG. Plasma exchange for severe attacks of CNS demyelination: predictors of response. Neurology. 2002;58(1):143–146. doi:10.1212/WNL.58.1.143
  • Baharnoori M, Hohol M, Pavenski K, O’Connor P. Therapeutic Effect of Plasma Exchange (PLEX) in Neuromyelitis Optica (NMO): immediate and Long Term Response (S63. 005). AAN Enterprises. 2014.
  • Kleiter I, Gahlen A, Borisow N, et al. Neuromyelitis optica: evaluation of 871 attacks and 1153 treatment courses. Ann Neurol. 2016;79(2):206–216. doi:10.1002/ana.24554
  • Chang JC. Sepsis and septic shock: endothelial molecular pathogenesis associated with vascular microthrombotic disease. Thromb J. 2019;17(1):10. doi:10.1186/s12959-019-0198-4
  • Gyawali B, Ramakrishna K, Dhamoon AS. Sepsis: the evolution in definition, pathophysiology, and management. SAGE Open Med. 2019;7:2050312119835043. doi:10.1177/2050312119835043
  • Nguyen TC, Carcillo JA. Bench-to-bedside review: thrombocytopenia-associated multiple organ failure–a newly appreciated syndrome in the critically ill. Critical Care. 2006;10(6):235. doi:10.1186/cc5064
  • Jacob S, Muppidi S, Guidon A, et al. Guidance for the management of myasthenia gravis (MG) and Lambert-Eaton myasthenic syndrome (LEMS) during the COVID-19 pandemic. J Neurol Sci. 2020;412.
  • Magraner MJ, Coret F, Casanova B. The effect of intravenous immunoglobulin on neuromyelitis optica. Neurología. 2013;28(2):65–72. doi:10.1016/j.nrleng.2012.03.014
  • Bakker J, Metz L. Devic’s neuromyelitis optica treated with intravenous gamma globulin (IVIG). Canadian J Neurol Sci. 2004;31(2):265–267. doi:10.1017/S0317167100053932
  • Okada K, Tsuji S, Tanaka K. Intermittent intravenous immunoglobulin successfully prevents relapses of neuromyelitis optica. Int Med. 2007;46(19):1671–1672. doi:10.2169/internalmedicine.46.0217
  • Wang Y, Jiang W, He Q, et al. A retrospective cohort study of methylprednisolone therapy in severe patients with COVID-19 pneumonia. Signal Transduct Targeted Ther. 2020;5(1):57. doi:10.1038/s41392-020-0158-2
  • Cao W, Liu X, Bai T, et al. High-dose intravenous immunoglobulin as a therapeutic option for deteriorating patients with Coronavirus Disease 2019. Paper presented at: Open forum infectious diseases 2020.
  • Xie Y, Cao S, Dong H, et al. Effect of regular intravenous immunoglobulin therapy on prognosis of severe pneumonia in patients with COVID-19. J Infect. 2020;S0163–S4453(0120):30172–30179.
  • Altunrende B, Akdal G, Bajin MS, et al. Intravenous immunoglobulin treatment for recurrent optic neuritis. Arch Neuropsych. 2019;56(1):3.
  • Borisow N, Mori M, Kuwabara S, Scheel M, Paul F. Diagnosis and treatment of NMO spectrum disorder and MOG-encephalomyelitis. Front Neurol. 2018;9:888. doi:10.3389/fneur.2018.00888
  • Huang W, Wang L, Zhang B, Zhou L, Zhang T, Quan C. Effectiveness and tolerability of immunosuppressants and monoclonal antibodies in preventive treatment of neuromyelitis optica spectrum disorders: A systematic review and network meta-analysis. Mult Scler Relat Disord. 2019;35:246–252. doi:10.1016/j.msard.2019.08.009
  • Araki M, Matsuoka T, Miyamoto K, et al. Efficacy of the anti–IL-6 receptor antibody tocilizumab in neuromyelitis optica: a pilot study. Neurology. 2014;82(15):1302–1306. doi:10.1212/WNL.0000000000000317
  • Huang Q, Wang J, Zhou Y, et al. Low-dose mycophenolate mofetil for treatment of neuromyelitis optica spectrum disorders: a prospective multicenter study in South China. Front Immunol. 2018;9:2066. doi:10.3389/fimmu.2018.02066
  • Kim S-H, Huh S-Y, Lee SJ, Joung A, Kim HJ. A 5-year follow-up of rituximab treatment in patients with neuromyelitis optica spectrum disorder. JAMA Neurol. 2013;70(9):1110–1117. doi:10.1001/jamaneurol.2013.3071
  • Li X, Mei S, Gong X, et al. Relationship between Azathioprine metabolites and therapeutic efficacy in Chinese patients with neuromyelitis optica spectrum disorders. BMC Neurol. 2017;17(1):130. doi:10.1186/s12883-017-0903-5
  • Xu Y, Wang Q, Ren H-T, et al. Comparison of efficacy and tolerability of azathioprine, mycophenolate mofetil, and cyclophosphamide among patients with neuromyelitis optica spectrum disorder: a prospective cohort study. J Neurol Sci. 2016;370:224–228. doi:10.1016/j.jns.2016.09.035
  • Tiede I, Fritz G, Strand S, et al. CD28-dependent Rac1 activation is the molecular target of azathioprine in primary human CD4+ T lymphocytes. J Clin Invest. 2003;111(8):1133–1145. doi:10.1172/JCI16432
  • Konidari A, El Matary W. Use of thiopurines in inflammatory bowel disease: safety issues. World J Gastrointest Pharmacol Ther. 2014;5(2):63. doi:10.4292/wjgpt.v5.i2.63
  • Rademaker M, Baker C, Foley P, Sullivan J, Wang C. Advice regarding COVID‐19 and use of immunomodulators, in patients with severe dermatological diseases. Australasian J Dermatol. 2020;61(2):158–159. doi:10.1111/ajd.13295
  • Alhazzani W, Møller MH, Arabi YM, et al. Surviving Sepsis Campaign: guidelines on the management of critically ill adults with Coronavirus Disease 2019 (COVID-19). Intensive Care Med. 2020;1–34.
  • Gao F, Chai B, Gu C, et al. Effectiveness of rituximab in neuromyelitis optica: a meta-analysis. BMC Neurol. 2019;19(1):36. doi:10.1186/s12883-019-1261-2
  • Amor S, Baker D, Khoury SJ, Schmierer K, Giovanonni G. SARS-CoV-2 and Multiple Sclerosis: not All Immune Depleting DMTs are Equal or Bad. Ann Neurol. 2020;87(6):794–797. doi:10.1002/ana.25770
  • Kimby E. Tolerability and safety of rituximab (MabThera®). Cancer Treat Rev. 2005;31(6):456–473. doi:10.1016/j.ctrv.2005.05.007
  • Juto A, Fink K, Al Nimer F, Piehl F. Interrupting rituximab treatment in relapsing-remitting multiple sclerosis; no evidence of rebound disease activity. Mult Scler Relat Disord. 2020;37:101468. doi:10.1016/j.msard.2019.101468
  • Lebrun C, Cohen M, Rosenthal-Allieri MA, et al. Only follow-up of memory B cells helps monitor rituximab administration to patients with neuromyelitis optica spectrum disorders. Neurol Ther. 2018;7(2):373–383. doi:10.1007/s40120-018-0101-4
  • Lamba V, Sangkuhl K, Sanghavi K, Fish A, Altman RB, Klein TE. PharmGKB summary: mycophenolic acid pathway. Pharmacogenet Genomics. 2014;24(1):73. doi:10.1097/FPC.0000000000000010
  • Ritter M, Pirofski L-A. Mycophenolate mofetil: effects on cellular immune subsets, infectious complications, and antimicrobial activity. Transplant Infect Dis. 2009;11(4):290–297. doi:10.1111/j.1399-3062.2009.00407.x
  • Eugui E, Mirkovich A, Allison A. Lymphocyte‐selective antiproliferative and immunosuppressive effects of mycophenolic acid in mice. Scand J Immunol. 1991;33(2):175–183. doi:10.1111/j.1365-3083.1991.tb03747.x
  • Song ATW, Abdala E, Bonazzi PR, Bacchella T, Machado MCC. Does mycophenolate mofetil increase the risk of cytomegalovirus infection in solid organ transplant recipients?: A mini-review. Br J Infect Dis. 2006;10(2):132–138.
  • Karnell JL, Karnell FG, Stephens GL, et al. Mycophenolic acid differentially impacts B cell function depending on the stage of differentiation. J Immunol. 2011;187(7):3603–3612. doi:10.4049/jimmunol.1003319
  • Nosadini M, Gadian J, Lim M, Sartori S, Thomas T, Dale RC. Mycophenolate mofetil in paediatric autoimmune or immune‐mediated diseases of the central nervous system: clinical experience and recommendations. Dev Med Child Neurol. 2019;61(4):458–468. doi:10.1111/dmcn.14020
  • Jacob A, Matiello M, Weinshenker BG, et al. Treatment of neuromyelitis optica with mycophenolate mofetil: retrospective analysis of 24 patients. Arch Neurol. 2009;66(9):1128–1133. doi:10.1001/archneurol.2009.175
  • Abadja F, Atemkeng S, Alamartine E, Berthoux F, Mariat C. Impact of mycophenolic acid and tacrolimus on Th17-related immune response. Transplantation. 2011;92(4):396–403. doi:10.1097/TP.0b013e3182247b5f
  • Antonio R, Silvia M. Immunosuppression drug‐related and clinical manifestation of Coronavirus disease 2019: a therapeutical hypothesis. Am J Transplant. 2020;1.
  • Malaviya AN, Sharma A, Agarwal D, Kapoor S, Garg S, Sawhney S. Low‐dose and high‐dose methotrexate are two different drugs in practical terms. Int J Rheum Dis. 2010;13(4):288–293. doi:10.1111/j.1756-185X.2010.01564.x
  • Kitley J, Elsone L, George J, et al. Methotrexate is an alternative to azathioprine in neuromyelitis optica spectrum disorders with aquaporin-4 antibodies. J Neurol Neurosurg Psychiatry. 2013;84(8):918–921. doi:10.1136/jnnp-2012-304774
  • Ibrahim A, Ahmed M, Conway R, Carey JJ. Risk of Infection with Methotrexate Therapy in Inflammatory Diseases: A Systematic Review and Meta-Analysis. J Clin Med. 2019;8(1):15. doi:10.3390/jcm8010015
  • Zisman D, McCune W, Tino G. Drug-induced pneumonitis: the role of methotrexate. Sarcoidosis Vasculitis Diffuse Lung Dis. 2001;18(3):243–252.
  • Colvin O. An overview of cyclophosphamide development and clinical applications. Curr Pharm Des. 1999;5:555–560.
  • Ahlmann M, Hempel G. The effect of cyclophosphamide on the immune system: implications for clinical cancer therapy. Cancer Chemother Pharmacol. 2016;78(4):661–671. doi:10.1007/s00280-016-3152-1
  • Poonsombudlert K, Kewcharoen J, Prueksapraopong C, Limpruttidham N. Post transplant cyclophosphamide based haplo-identical transplant versus umbilical cord blood transplant; a meta-analysis. Jpn J Clin Oncol. 2019;49(10):924–931. doi:10.1093/jjco/hyz099
  • Atilla E, Ates C, Uslu A, et al. Prospective Analysis of Hemorrhagic Cystitis and BK Viremia in Allogeneic Hematopoietic Stem Cell Transplantation. Turkish j Haematol. 2019. doi:10.4274/tjh.galenos.2019.2019.0296
  • Silva T. Immunossupression murine model to study antiviral resistance emergence during Influenza A infection. 2019.
  • Frampton JE. Eculizumab: A Review in Neuromyelitis Optica Spectrum Disorder. Drugs. 2020;80(7):719–727. doi:10.1007/s40265-020-01297-w
  • Jiang Y, Zhao G, Song N, et al. Blockade of the C5a–C5aR axis alleviates lung damage in hDPP4-transgenic mice infected with MERS-CoV. Em Microb Infect. 2018;7(1):1–12.
  • Diurno F, Numis FG, Porta G, et al. Eculizumab treatment in patients with COVID-19: preliminary results from real life ASL Napoli 2 Nord experience. Eur Rev Med Pharmacol Sci. 2020;24(7):4040–4047.
  • Wingerchuk D, Pittock S, Berthele A, et al. Long-term safety and effectiveness of eculizumab in neuromyelitis optica spectrum disorder. Paper presented at: MULTIPLE SCLEROSIS JOURNAL 2019.
  • Araki M. Blockade of IL-6 signaling in neuromyelitis optica. Neurochem Int. 2019;130:104315. doi:10.1016/j.neuint.2018.10.012
  • Zhang C, Wu Z, Li J-W, Zhao H, Wang G-Q. The cytokine release syndrome (CRS) of severe COVID-19 and Interleukin-6 receptor (IL-6R) antagonist Tocilizumab may be the key to reduce the mortality. Int J Antimicrob Agents. 2020;55(5):105954. doi:10.1016/j.ijantimicag.2020.105954
  • Francesco P, Perrone M.Tocilizumab in COVID-19 Pneumonia (TOCIVID-19) (TOCIVID-19). 2020https://clinicaltrials.gov/ct2/show/NCT04317092. Accessed August 6, 2020.
  • Xu X, Han M, Li T, et al. Effective treatment of severe COVID-19 patients with tocilizumab. Proc Natl Acad Sci U S A. 2020;117(20):10970–10975. doi:10.1073/pnas.2005615117
  • Lallana JM, Clares RH, Guarnizo EC, et al. Efficacy and Safety of Tocilizumab as Second Line Therapy in Neuromyelitis Optica Unresponsive to Rituximab (P5. 262). AAN Enterprises. 2015.
  • Ayzenberg I, Faissner S, Tomaske L, Richter D, Behrendt V, Gold R. General principles and escalation options of immunotherapy in autoantibody-associated disorders of the CNS. Neurol Res Pract. 2019;1(1):32. doi:10.1186/s42466-019-0037-x
  • Yamamura T, Kleiter I, Fujihara K, et al. Trial of satralizumab in neuromyelitis optica Spectrum disorder. N Eng J Med. 2019;381(22):2114–2124. doi:10.1056/NEJMoa1901747