216
Views
2
CrossRef citations to date
0
Altmetric
Original Research

Single Nucleotide Polymorphism in the 3’ Untranslated Region of PRKAA2 on Cardiometabolic Parameters in Type 2 Diabetes Mellitus Patients Who Received Metformin

ORCID Icon, , , ORCID Icon, , & show all
Pages 349-357 | Published online: 05 Apr 2022

References

  • Rowley WR, Bezold C, Arikan Y, Byrne E, Krohe S. Diabetes 2030: insights from yesterday, today, and future trends. Popul Health Manag. 2017;20(1):6–12. doi:10.1089/pop.2015.0181
  • American Diabetes Association. Standards of medical care in diabetes. J Clin Appl Res Educ. 2020;43(1):1–212.
  • Cosentino F, Grant PJ, Aboyans V, et al. 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur Heart J. 2020;41(2):255–323. doi:10.1093/eurheartj/ehz486
  • Khan MAB, Hashim MJ, King JK, Govender RD, Mustafa H, Al Kaabi J. Epidemiology of type 2 diabetes – global burden of disease and forecasted trends. J Epidemiol Glob Health. 2019;10(1):107. doi:10.2991/jegh.k.191028.001
  • Mihardja L, Soetrisno U, Soegondo S. Prevalence and clinical profile of diabetes mellitus in productive aged urban Indonesians. J Diabetes Invest. 2014;5(5):507–512. doi:10.1111/jdi.12177
  • Maifitrianti M, Wulandari N, Haro M, Lestari SF, Fitriani A. Glycemic control and its factor in type 2 diabetic patients in Jakarta. Indones J Clin Pharm. 2020;9(3):198–204. doi:10.15416/ijcp.2020.9.3.198
  • Cholil AR, Lindarto D, Pemayun TGD, Wisnu W, Kumala P, Puteri HHS. DiabCare Asia 2012: diabetes management, control, and complications in patients with type 2 diabetes in Indonesia. Med J Indones. 2019;28(1):47–56. doi:10.13181/mji.v28i1.2931
  • Pamungkas RA, Hadijah S, Mayasari A, Nusdin N. Factors associated with poor glycemic control among type 2 diabetes mellitus in Indonesia. Belitung Nurs J. 2017;3(3):272–280. doi:10.33546/bnj.61
  • Rashid M, Shahzad M, Mahmood S, Khan K. Variability in the therapeutic response of metformin treatment in patients with type 2 diabetes mellitus. Pakistan J Med Sci. 2019;35(1):71–76.
  • Zhou K, Donnelly L, Yang J, et al. Heritability of variation in glycaemic response to metformin: a genome-wide complex trait analysis. Lancet Diabetes Endocrinol. 2014;2(6):481–487. doi:10.1016/S2213-8587(14)70050-6
  • Bankura B, Das M, Kumar Pattanayak A, et al. Inter-patient variability in clinical efficacy of metformin in type 2 diabetes mellitus patients in West Bengal, India. J Metab Synd. 2016;5(2):198–202. doi:10.4172/2167-0943.1000198
  • Mccreight LJ, Bailey CJ, Pearson ER. Metformin and the gastrointestinal tract. Diabetologia. 2016;2016(59):426–435. doi:10.1007/s00125-015-3844-9
  • Riwu M, Subarnas A, Lestari K. The correlation of age factor, administration, and metformin dose against risk of side effect on type 2 diabetes mellitus. Indones J Clin Pharm. 2015;4(3):151–161. doi:10.15416/ijcp.2015.4.3.151
  • Minamii T, Nogami M, Ogawa W. Mechanisms of metformin action: in and out of the gut. J Diabetes Investig. 2018;9(4):701–703. doi:10.1111/jdi.12864
  • Zilov AV, Abdelaziz SI, AlShammary A, et al. Mechanisms of action of metformin with special reference to cardiovascular protection. Diabetes Metab Res Rev. 2019;35(7):e3173. doi:10.1002/dmrr.3173
  • Foretz M, Guigas B, Bertrand L, Pollak M, Viollet B. Metformin: from mechanisms of action to therapies. Cell Metab. 2014;20(6):953–966. doi:10.1016/j.cmet.2014.09.018
  • Rena G, Hardie DG, Pearson ER. The mechanisms of action of metformin. Diabetologia. 2017;60(9):1577–1585. doi:10.1007/s00125-017-4342-z
  • Mato EPM, Guewo-Fokeng M, Faadiel Essop M, Owira PMO. Genetic polymorphisms of organic cation transporters 1 (OCT1) and responses to metformin therapy in individuals with type 2 diabetes mellitus: a systematic review protocol. Syst Rev. 2018;7(1):105. doi:10.1186/s13643-018-0773-y
  • Masilela C, Pearce B, Ongole JJ, Adeniyi OV, Benjeddou M. Single nucleotide polymorphisms associated with metformin and sulphonylureas’ glycaemic response among South African adults with type 2 diabetes mellitus. J Pers Med. 2021;11(2):1–14. doi:10.3390/jpm11020104
  • Li Q, Li C, Li H, et al. STK11 rs2075604 polymorphism is associated with metformin efficacy in Chinese type 2 diabetes mellitus. Int J Endocrinol. 2017;2017:3402808. doi:10.1155/2017/3402808
  • Xiao D, Liu J-Y, Zhang S-M, et al. A two-stage study identifies two novel polymorphisms in PRKAG2 affecting metformin response in Chinese type 2 diabetes patients. Pharmgenomics Pers Med. 2021;14:745–755. doi:10.2147/PGPM.S305020
  • Kim J, Yang G, Kim Y, Kim J, Ha J. AMPK activators: mechanisms of action and physiological activities. Exp Mol Med. 2016;48(4):e224–12. doi:10.1038/emm.2016.16
  • Steinberg GR, Carling D. AMP-activated protein kinase: the current landscape for drug development. Nat Rev Drug Discov. 2019;18(7):527–551. doi:10.1038/s41573-019-0019-2
  • Tseng CH. Metformin and risk of hypertension in Taiwanese patients with type 2 diabetes mellitus. J Am Heart Assoc. 2018;7(13):e008860. doi:10.1161/JAHA.118.008860
  • Hansen CS, Lundby-Christiansen L, Tarnow L, et al. Metformin may adversely affect orthostatic blood pressure recovery in patients with type 2 diabetes: substudy from the placebo-controlled Copenhagen Insulin and Metformin Therapy (CIMT) trial. Cardiovasc Diabetol. 2020;19(1):1–10. doi:10.1186/s12933-020-01131-3
  • Lin SH, Cheng PC, Te TS, Hsu SR, Cheng YC, Liu YH. Effect of metformin monotherapy on serum lipid profile in statin-naïve individuals with newly diagnosed type 2 diabetes mellitus: a cohort study. Peer J. 2018;2018(4):e4578. doi:10.7717/peerj.4578
  • Rosenzweig JL, Bakris GL, Berglund LF, et al. Primary prevention of ASCVD and T2DM in patients at metabolic risk: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2019;104(9):3939–3985.
  • Einarson TR, Acs A, Ludwig C, Panton UH. Prevalence of cardiovascular disease in type 2 diabetes: a systematic literature review of scientific evidence from across the world in 2007–2017. Cardiovasc Diabetol. 2018;17(1):83. doi:10.1186/s12933-018-0728-6
  • Virginia DM, Wahyuningsih MSH, Nugrahaningsih DAA. Association between three variants in the PRKAA2 gene, rs2796498, rs9803799, and rs2746342, with 10-year ASCVD risk on newly diagnosed T2DM in Yogyakarta, Indonesia. Open Access Maced J Med Sci. 2021;9(A):541–547. doi:10.3889/oamjms.2021.6213
  • NCBI [homepage on the Internet]. rs857148 RefSNP Report - dbSNP - NCBI. Available from: https://www.ncbi.nlm.nih.gov/snp/rs857148#frequency_tab. Accessed November 11, 2021.
  • Zhou S, Li M, Zeng D, et al. A single nucleotide polymorphism in 3’ untranslated region of epithelial growth factor receptor confers risk for pulmonary hypertension in chronic obstructive pulmonary disease. Cell Physiol Biochem. 2015;36(1):166–178. doi:10.1159/000374061
  • Silva NNT, Santos ACS, Nogueira VM, Carneiro CM, Lima AA. 3ʹUTR polymorphism of thymidylate synthase gene increased the risk of persistence of pre-neoplastic cervical lesions. BMC Cancer. 2020;20(1):1–9. doi:10.1186/s12885-020-06811-7
  • Matoulkova E, Michalova E, Vojtesek B, Hrstka R. The role of the 3' untranslated region in post-transcriptional regulation of protein expression in mammalian cells. RNA Biol. 2012;9(5):563–576. doi:10.4161/rna.20231
  • Vardarlı AT, Harman E, Çetintaş VB, et al. Polymorphisms of lipid metabolism enzyme-coding genes in patients with diabetic dyslipidemia. Anatol J Cardiol. 2017;17(4):313–321. doi:10.14744/AnatolJCardiol.2016.7142
  • Vimaleswaran KS, Bodhini D, Jiang J, et al. Circulating adiponectin mediates the association between omentin gene polymorphism and cardiometabolic health in Asian Indians. PLoS One. 2021;16(5):e0238555. doi:10.1371/journal.pone.0238555
  • Li C, Yang Y, Liu X, Li Z, Liu H, Tan Q. Glucose metabolism-related gene polymorphisms as the risk predictors of type 2 diabetes. Diabetol Metab Syndr. 2020;12(1):1–6. doi:10.1186/s13098-020-00604-5
  • Schneider H, Schubert KM, Blodow S, et al. AMPK dilates resistance arteries via activation of SERCA and BK Ca channels in smooth muscle. Hypertension. 2015;66(1):108–116. doi:10.1161/HYPERTENSIONAHA.115.05514
  • Wei M, Gan L, Liu Z, et al. Mitochondrial-derived peptide mots-c attenuates vascular calcification and secondary myocardial remodeling via adenosine monophosphate-activated protein kinase signaling pathway. Cardiorenal Med. 2020;10(1):42–50. doi:10.1159/000503224
  • Lee YH, Do SK, Lee SY, et al. TSC2 genetic variant and prognosis in non-small cell lung cancer after curative surgery. Thorac Cancer. 2019;10(2):335–340. doi:10.1111/1759-7714.12951
  • Virginia DM, Wahyuningsih MSH, Nugrahaningsih DAA. PRKAA2 variation and the clinical characteristics of patients newly diagnosed with type 2 diabetes mellitus in Yogyakarta, Indonesia. Asian Biomed. 2021;15(4):161–170. doi:10.2478/abm-2021-0021
  • Sokolova LK, Pushkarev VM, Belchina YB, Pushkarev VV, Vatseba TS, Tronko ND. Association of 5ʹAMP-activated protein kinase activity with disease duration and HbA1c content in leukocytes in diabetic patients. Int J Endocrinol. 2019;15(1):23–26.
  • Luo S, Schooling CM, Wong ICK, Au Yeung SL. Evaluating the impact of AMPK activation, a target of metformin, on risk of cardiovascular diseases and cancer in the UK Biobank: a Mendelian randomisation study. Diabetologia. 2020;63(11):2349–2358. doi:10.1007/s00125-020-05243-z
  • Dutta D, Kalra S, Sharma M. Adenosine monophosphate-activated protein kinase-based classification of diabetes pharmacotherapy. J Postgrad Med. 2017;63(2):114–121. doi:10.4103/0022-3859.191007
  • Coughlan KA, Valentine RJ, Ruderman NB, Saha AK. AMPK activation: a therapeutic target for type 2 diabetes? Diabetes Metab Syndr Obes Targets Ther. 2014;7:241–253.
  • Spencer-Jones NJ, Ge D, Snieder H, et al. AMP-kinase α2 subunit gene PRKAA2 variants are associated with total cholesterol, low-density lipoprotein-cholesterol and high-density lipoprotein-cholesterol in normal women. J Med Genet. 2006;43(12):936–942. doi:10.1136/jmg.2006.041988
  • Kinaan M, Ding H, Triggle CR. Metformin: an old drug for the treatment of diabetes but a new drug for the protection of the endothelium. Med Princ Pract. 2015;24(5):401–415. doi:10.1159/000381643
  • Fullerton MD. AMP-activated protein kinase and its multifaceted regulation of hepatic metabolism. Curr Opin Lipidol. 2016;27(2):172–180. doi:10.1097/MOL.0000000000000273
  • Han Y, Hu Z, Cui A, et al. Post-translational regulation of lipogenesis via AMPK-dependent phosphorylation of insulin-induced gene. Nat Commun. 2019;10(1):1–13.
  • Loh K, Tam S, Murray-Segal L, et al. Inhibition of adenosine monophosphate-activated protein kinase-3-hydroxy-3-methylglutaryl coenzyme a reductase signaling leads to hypercholesterolemia and promotes hepatic steatosis and insulin resistance. Hepatol Commun. 2019;3(1):84–98. doi:10.1002/hep4.1279
  • Tang H, Dong X, Hassan M, Abbruzzese JL, Li D. Body mass index and obesity- and diabetes-associated genotypes and risk for pancreatic cancer. Cancer Epidemiol Biomarkers Prev. 2011;20(5):779–792. doi:10.1158/1055-9965.EPI-10-0845