159
Views
1
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Population-Specific Distribution of TPMT Deficiency Variants and Ancestry Proportions in Ecuadorian Ethnic Groups: Towards Personalized Medicine

ORCID Icon, , , , , , ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 1005-1018 | Received 30 Jul 2023, Accepted 06 Nov 2023, Published online: 29 Nov 2023

References

  • Remy CN. Metabolism of thiopyrimidines and thiopurines. S-Methylation with S-adenosylmethionine transmethylase and catabolism in mammalian tissues. J Biol Chem. 1963;238:1078–1084. doi:10.1016/S0021-9258(18)81262-5
  • Cara CJ, Pena AS, Sans M, et al. Reviewing the mechanism of action of thiopurine drugs: towards a new paradigm in clinical practice. Med Sci Monit. 2004;10(11):RA247–RA254.
  • Sahasranaman S, Howard D, Roy S. Clinical pharmacology and pharmacogenetics of thiopurines. Eur J Clin Pharmacol. 2008;64(8):753–767. doi:10.1007/s00228-008-0478-6
  • Karran P, Attard N. Thiopurines in current medical practice: molecular mechanisms and contributions to therapy-related cancer. Nat Rev Cancer. 2008;8(1):24–36. doi:10.1038/nrc2292
  • Relling MV, Gardner EE, Sandborn WJ, et al. Clinical pharmacogenetics implementation consortium guidelines for thiopurine methyltransferase genotype and thiopurine dosing: 2013 update. Clin Pharmacol Ther. 2013;93(4):324–325. doi:10.1038/clpt.2013.4
  • Weinshilboum RM, Sladek SL. Mercaptopurine pharmacogenetics: monogenic inheritance of erythrocyte thiopurine methyltransferase activity. Am J Hum Genet. 1980;32(5):651–662.
  • Krynetski EY, Schuetz JD, Galpin AJ, Pui CH, Relling MV, Evans WE. A single point mutation leading to loss of catalytic activity in human thiopurine S-methyltransferase. Proc Natl Acad Sci U S A. 1995;92(4):949–953. doi:10.1073/pnas.92.4.949
  • Salavaggione OE, Wang L, Wiepert M, Yee VC, Weinshilboum RM. Thiopurine S-methyltransferase pharmacogenetics: variant allele functional and comparative genomics. Pharmacogenet Genomics. 2005;15(11):801–815. doi:10.1097/01.fpc.0000174788.69991.6b
  • Brouwer C, Marinaki AM, Lambooy LH, Duley JA, Shobowale-Bakre M, De Abreu RA. Pitfalls in the determination of mutant alleles of the thiopurine methyltransferase gene. Leukemia. 2001;15(11):1792–1793. doi:10.1038/sj.leu.2402285
  • Loennechen T, Yates CR, Fessing MY, Relling MV, Krynetski EY, Evans WE. Isolation of a human thiopurine S-methyltransferase (TPMT) complementary DNA with a single nucleotide transition A719G (TPMT*3C) and its association with loss of TPMT protein and catalytic activity in humans. Clin Pharmacol Ther. 1998;64(1):46–51. doi:10.1016/S0009-9236(98)90021-2
  • Tai H-L, Krynetski EY, Yates CR, et al. Thiopurine S-methyltransferase deficiency: two nucleotide transitions define the most prevalent mutant allele associated with loss of catalytic activity in Caucasians. Am J Hum Genet. 1996;58(4):694.
  • Otterness D, Szumlanski C, Lennard L, et al. Human thiopurine methyltransferase pharmacogenetics: gene sequence polymorphisms. Clin Pharmacol Ther. 1997;62(1):60–73. doi:10.1016/S0009-9236(97)90152-1
  • Isaza C, Henao J, Lopez AM, Cacabelos R. Allelic variants of the thiopurine methyltransferase (TPMT) gene in the Colombian population. Methods Find Exp Clin Pharmacol. 2003;25(6):423–429. doi:10.1358/mf.2003.25.6.769646
  • Collie-Duguid ES, Pritchard SC, Powrie RH, et al. The frequency and distribution of thiopurine methyltransferase alleles in Caucasian and Asian populations. Pharmacogenetics. 1999;9(1):37–42. doi:10.1097/00008571-199902000-00006
  • Ameyaw MM, Collie-Duguid ES, Powrie RH, Ofori-Adjei D, McLeod HL. Thiopurine methyltransferase alleles in British and Ghanaian populations. Hum Mol Genet. 1999;8(2):367–370. doi:10.1093/hmg/8.2.367
  • Chang JG, Lee LS, Chen CM, et al. Molecular analysis of thiopurine S-methyltransferase alleles in South-East Asian populations. Pharmacogenetics. 2002;12(3):191–195. doi:10.1097/00008571-200204000-00003
  • Garrido C, Santizo VG, Mullers P, et al. Frequency of thiopurine S-methyltransferase mutant alleles in indigenous and admixed Guatemalan patients with acute lymphoblastic leukemia. Med Oncol. 2013;30(1):474. doi:10.1007/s12032-013-0474-2
  • Pratt VM, Cavallari LH, Fulmer ML, et al. TPMT and NUDT15 genotyping recommendations: a joint consensus recommendation of the association for molecular pathology, clinical pharmacogenetics implementation consortium, college of American Pathologists, Dutch Pharmacogenetics Working Group of the Royal Dutch Pharmacists Association, European Society for Pharmacogenomics and Personalized Therapy, and Pharmacogenomics Knowledgebase. J Mol Diagn. 2022;24(10):1051–1063. doi:10.1016/j.jmoldx.2022.06.007
  • Zimdahl Kahlin A, Helander S, Wennerstrand P, Vikingsson S, Martensson LG, Appell ML. Pharmacogenetic studies of thiopurine methyltransferase genotype-phenotype concordance and effect of methotrexate on thiopurine metabolism. Basic Clin Pharmacol Toxicol. 2021;128(1):52–65. doi:10.1111/bcpt.13483
  • Relling MV, Schwab M, Whirl-Carrillo M, et al. Clinical pharmacogenetics implementation consortium guideline for thiopurine dosing based on TPMT and NUDT15 genotypes: 2018 update. Clin Pharmacol Ther. 2019;105(5):1095–1105. doi:10.1002/cpt.1304
  • van den Bosch BJ, Coenen MJ, van den Bosch BJ. Pharmacogenetics of inflammatory bowel disease. Pharmacogenomics. 2021;22(1):55–66. doi:10.2217/pgs-2020-0095
  • Lee JM, Shim YJ, Kim DH, Jung N, Ha JS. The effect of NUDT15, TPMT, APEX1, and ITPA genetic variations on mercaptopurine treatment of pediatric acute lymphoblastic leukemia. Children. 2021;8(3):224. doi:10.3390/children8030224
  • Ramos KN, Gregornik D, Ramos KS. Pharmacogenomics insights into precision pediatric oncology. Curr Opin Pediatr. 2021;33(6):564–569. doi:10.1097/MOP.0000000000001065
  • Tanaka Y, Saito Y. Importance of NUDT15 polymorphisms in thiopurine treatments. J Pers Med. 2021;11(8):778. doi:10.3390/jpm11080778
  • Kakuta Y, Kinouchi Y, Shimosegawa T. Pharmacogenetics of thiopurines for inflammatory bowel disease in East Asia: prospects for clinical application of NUDT15 genotyping. J Gastroenterol. 2018;53(2):172–180. doi:10.1007/s00535-017-1416-0
  • Yang JJ, Landier W, Yang W, et al. Inherited NUDT15 variant is a genetic determinant of mercaptopurine intolerance in children with acute lymphoblastic leukemia. J Clin Oncol. 2015;33(11):1235–1242. doi:10.1200/JCO.2014.59.4671
  • Miao Q, Yan L, Zhou Y, et al. Association of genetic variants in TPMT, ITPA, and NUDT15 with azathioprine-induced myelosuppression in southwest China patients with autoimmune hepatitis. Sci Rep. 2021;11(1):7984. doi:10.1038/s41598-021-87095-0
  • Zhou Y, Lauschke VM. Population pharmacogenomics: an update on ethnogeographic differences and opportunities for precision public health. Hum Genet. 2022;141(6):1113–1136. doi:10.1007/s00439-021-02385-x
  • Eltantawy N, El-Zayyadi IAE-H, Elberry AA, et al. Association of genetic polymorphism of NUDT15, TPMT and ITPA gene in the toxicity and efficacy of azathioprine-based regimen in Egyptian inflammatory bowel disease patients. Beni-Suef Univ J Basic Appl Sci. 2023;12(1):14. doi:10.1186/s43088-023-00340-5
  • Suarez-Kurtz G, de Araujo GS. Pharmacogenetic differentiation across Latin America. Pharmacogenomics. 2022;23(4):225–233. doi:10.2217/pgs-2021-0152
  • Suarez-Kurtz G, Parra EJ. Population diversity in pharmacogenetics: a Latin American perspective. Adv Pharmacol. 2018;83:133–154.
  • Zambrano AK, Gaviria A, Cobos-Navarrete S, et al. The three-hybrid genetic composition of an Ecuadorian population using AIMs-InDels compared with autosomes, mitochondrial DNA and Y chromosome data. Sci Rep. 2019;9(1):9247. doi:10.1038/s41598-019-45723-w
  • Miller SA, Dykes DD, Polesky HF. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988;16(3):1215. doi:10.1093/nar/16.3.1215
  • Pereira R, Phillips C, Pinto N, et al. Straightforward inference of ancestry and admixture proportions through ancestry-informative insertion deletion multiplexing. PLoS One. 2012;7(1):e29684. doi:10.1371/journal.pone.0029684
  • Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155(2):945–959. doi:10.1093/genetics/155.2.945
  • Larovere LE, de Kremer RD, Lambooy LH, De Abreu RA, de Kremer RD. Genetic polymorphism of thiopurine S-methyltransferase in Argentina. Ann Clin Biochem. 2003;40(4):388–393. doi:10.1258/000456303766477039
  • Boson WL, Romano-Silva MA, Correa H, Falcao RP, Teixeira-Vidigal PV, De Marco L. Thiopurine methyltransferase polymorphisms in a Brazilian population. Pharmacogenomics J. 2003;3(3):178–182. doi:10.1038/sj.tpj.6500175
  • Lu HF, Shih MC, Hsueh SC, Chen CM, Chang JY, Chang JG. Molecular analysis of the thiopurine S-methyltransferase alleles in Bolivians and Tibetans. J Clin Pharm Ther. 2005;30(5):491–496. doi:10.1111/j.1365-2710.2005.00640_1.x
  • Garat A, Cauffiez C, Renault N, et al. Characterisation of novel defective thiopurine S-methyltransferase allelic variants. Biochem Pharmacol. 2008;76(3):404–415. doi:10.1016/j.bcp.2008.05.009
  • Jimenez-Morales S, Ramirez-Florencio M, Mejia-Arangure JM, et al. Analysis of thiopurine S-Methyltransferase deficient alleles in acute lymphoblastic leukemia patients in Mexican patients. Arch Med Res. 2016;47(8):615–622. doi:10.1016/j.arcmed.2016.11.018
  • Haglund S, Lindqvist M, Almer S, Peterson C, Taipalensuu J. Pyrosequencing of TPMT alleles in a general Swedish population and in patients with inflammatory bowel disease. Clin Chem. 2004;50(2):288–295. doi:10.1373/clinchem.2003.023846
  • Schaeffeler E, Fischer C, Brockmeier D, et al. Comprehensive analysis of thiopurine S-methyltransferase phenotype-genotype correlation in a large population of German-Caucasians and identification of novel TPMT variants. Pharmacogenetics. 2004;14(7):407–417. doi:10.1097/01.fpc.0000114745.08559.db
  • Rossi AM, Bianchi M, Guarnieri C, Barale R, Pacifici GM. Genotype-phenotype correlation for thiopurine S-methyltransferase in healthy Italian subjects. Eur J Clin Pharmacol. 2001;57(1):51–54. doi:10.1007/s002280000246
  • Kurzawski M, Gawronska-Szklarz B, Drozdzik M. Frequency distribution of thiopurine S-methyltransferase alleles in a Polish population. Ther Drug Monit. 2004;26(5):541–545. doi:10.1097/00007691-200410000-00013
  • Indjova D, Atanasova S, Shipkova M, Armstrong VW, Oellerich M, Svinarov D. Phenotypic and genotypic analysis of thiopurine s-methyltransferase polymorphism in the Bulgarian population. Ther Drug Monit. 2003;25(5):631–636. doi:10.1097/00007691-200310000-00013
  • Loennechen T, Utsi E, Hartz I, Lysaa R, Kildalsen H, Aarbakke J. Detection of one single mutation predicts thiopurine S-methyltransferase activity in a population of Saami in northern Norway. Clin Pharmacol Ther. 2001;70(2):183–188. doi:10.1067/mcp.2001.117445
  • Zhang JP, Guan YY, Wu JH, Jiang WQ, Huang M. Genetic polymorphism of the thiopurine S-methyltransferase of healthy Han Chinese. Ai Zheng. 2003;22(4):385–388.
  • Kham SK, Tan PL, Tay AH, Heng CK, Yeoh AE, Quah TC. Thiopurine methyltransferase polymorphisms in a multiracial asian population and children with acute lymphoblastic leukemia. J Pediatr Hematol Oncol. 2002;24(5):353–359. doi:10.1097/00043426-200206000-00006
  • Srimartpirom S, Tassaneeyakul W, Kukongviriyapan V, Tassaneeyakul W. Thiopurine S-methyltransferase genetic polymorphism in the Thai population. Br J Clin Pharmacol. 2004;58(1):66–70. doi:10.1111/j.1365-2125.2004.02112.x
  • Kubota T, Chiba K. Frequencies of thiopurine S-methyltransferase mutant alleles (TPMT*2, *3A, *3B and *3C) in 151 healthy Japanese subjects and the inheritance of TPMT*3C in the family of a propositus. Br J Clin Pharmacol. 2001;51(5):475–477. doi:10.1046/j.1365-2125.2001.01371.x
  • Tumer TB, Ulusoy G, Adali O, Sahin G, Gozdasoglu S, Arinc E. The low frequency of defective TPMT alleles in Turkish population: a study on pediatric patients with acute lymphoblastic leukemia. Am J Hematol. 2007;82(10):906–910. doi:10.1002/ajh.20947
  • Moini M, Ghaderi F, Sagheb MM, et al. The frequency and distribution of thiopurine S-methyltransferase alleles in south Iranian population. Mol Biol Rep. 2012;39(4):4581–4587. doi:10.1007/s11033-011-1248-6
  • McLeod HL, Pritchard SC, Githang’a J, et al. Ethnic differences in thiopurine methyltransferase pharmacogenetics: evidence for allele specificity in Caucasian and Kenyan individuals. Pharmacogenetics. 1999;9(6):773–776. doi:10.1097/00008571-199912000-00012
  • Hamdy SI, Hiratsuka M, Narahara K, et al. Genotype and allele frequencies of TPMT, NAT2, GST, SULT1A1 and MDR-1 in the Egyptian population. Br J Clin Pharmacol. 2003;55(6):560–569. doi:10.1046/j.1365-2125.2003.01786.x
  • Oliveira E, Quental S, Alves S, Amorim A, Prata MJ. Do the distribution patterns of polymorphisms at the thiopurine S-methyltransferase locus in sub-Saharan populations need revision? Hints from Cabinda and Mozambique. Eur J Clin Pharmacol. 2007;63(7):703–706. doi:10.1007/s00228-007-0310-8
  • Saxena S, Krishna Murthy TP, Chandrashekhar CR, et al. A bioinformatics approach to the identification of novel deleterious mutations of human TPMT through validated screening and molecular dynamics. Sci Rep. 2022;12(1):18872. doi:10.1038/s41598-022-23488-z
  • Flores-Espinoza R, Angulo-Pozo A, Garzón-Salazar A, et al. Evaluating population structure of Ecuador for forensic STR markers. Forensic Sci Int Genet Suppl Ser. 2022;8:102–104. doi:10.1016/j.fsigss.2022.09.036
  • Flores-Espinoza R, Paz-Cruz E, Ruiz-Pozo VA, et al. Investigating genetic diversity in admixed populations from Ecuador. Am J Phys Anthropol. 2021;176(1):109–119. doi:10.1002/ajpa.24341
  • Bryc K, Velez C, Karafet T, et al. Colloquium paper: genome-wide patterns of population structure and admixture among Hispanic/Latino populations. Proc Natl Acad Sci U S A. 2010;107(Suppl 2):8954–8961. doi:10.1073/pnas.0914618107
  • Bedoya CA, Dreisigacker S, Hearne S, et al. Genetic diversity and population structure of native maize populations in Latin America and the Caribbean. PLoS One. 2017;12(4):e0173488. doi:10.1371/journal.pone.0173488
  • Zambrano A, Gaviria A, Vela M, et al. Ancestry characterization of ecuador’s highland mestizo population using autosomal AIM-INDELs. Forensic Sci Int Genet Suppl Ser. 2017;6:e477–e478. doi:10.1016/j.fsigss.2017.09.191
  • Nagar SD, Conley AB, Chande AT, et al. Genetic ancestry and ethnic identity in Ecuador. HGG Adv. 2021;2(4):100050. doi:10.1016/j.xhgg.2021.100050
  • Appell ML, Berg J, Duley J, et al. Nomenclature for alleles of the thiopurine methyltransferase gene. Pharmacogenet Genomics. 2013;23(4):242–248. doi:10.1097/FPC.0b013e32835f1cc0
  • YPH I, Helander S, Kahlin AZ, et al. One amino acid makes a difference-characterization of a new TPMT allele and the influence of SAM on TPMT stability. Sci Rep. 2017;7:46428. doi:10.1038/srep46428
  • Zhou Y, Dagli Hernandez C, Lauschke VM. Population-scale predictions of DPD and TPMT phenotypes using a quantitative pharmacogene-specific ensemble classifier. Br J Cancer. 2020;123(12):1782–1789. doi:10.1038/s41416-020-01084-0
  • Tamm R, Oselin K, Kallassalu K, et al. Thiopurine S-methyltransferase (TPMT) pharmacogenetics: three new mutations and haplotype analysis in the Estonian population. Clin Chem Lab Med. 2008;46(7):974–979. doi:10.1515/CCLM.2008.187
  • Marinaki AM, Arenas M, Khan ZH, et al. Genetic determinants of the thiopurine methyltransferase intermediate activity phenotype in British Asians and Caucasians. Pharmacogenetics. 2003;13(2):97–105. doi:10.1097/00008571-200302000-00006
  • Lopez-Cortes A, Guerrero S, Redal MA, Alvarado AT, Quinones LA. State of art of cancer pharmacogenomics in Latin American populations. Int J Mol Sci. 2017;18(6):639. doi:10.3390/ijms18060639
  • Burgos G, Gomes V, Nguidi M, et al. Genetic ancestry in afro-descendants from the Andes and Pacific coast regions of Ecuador. Forensic Sci Int Genet Suppl Ser. 2022;8:254–256. doi:10.1016/j.fsigss.2022.10.053
  • Hon YY, Fessing MY, Pui CH, Relling MV, Krynetski EY, Evans WE. Polymorphism of the thiopurine S-methyltransferase gene in African-Americans. Hum Mol Genet. 1999;8(2):371–376. doi:10.1093/hmg/8.2.371
  • Suarez-Kurtz G, Araujo GS, de Sousa SJ. Pharmacogenomic implications of population diversity in Latin America: TPMT and NUDT15 polymorphisms and thiopurine dosing. Pharmacogenet Genomics. 2020;30(1):1–4. doi:10.1097/FPC.0000000000000388
  • Texis T, Guzman-Cruz C, Rodriguez-Dorantes M, Sanchez-Garcia S, Mino-Leon D, Gonzalez-Covarrubias V. Genotyping NUDT15*3 rs1166855232 reveals higher frequency of potential adverse effects of thiopurines in Natives and Mestizos from Mexico. Pharmacol Rep. 2022;74(1):257–262. doi:10.1007/s43440-021-00287-3
  • Lopez-Cortes A, Esperon P, Martinez MF, et al. Editorial: pharmacogenetics and pharmacogenomics in Latin America: ethnic variability, new insights in advances and perspectives: a RELIVAF-CYTED initiative, Volume II. Front Pharmacol. 2023;14:1211712. doi:10.3389/fphar.2023.1211712
  • Katara P, Kuntal H. TPMT polymorphism: when shield becomes weakness. Interdiscip Sci. 2016;8(2):150–155. doi:10.1007/s12539-015-0111-1
  • Stocco G, Martelossi S, Barabino A, et al. TPMT genotype and the use of thiopurines in paediatric inflammatory bowel disease. Dig Liver Dis. 2005;37(12):940–945. doi:10.1016/j.dld.2005.08.003
  • Lennard L. TPMT in the treatment of Crohn’s disease with azathioprine. Gut. 2002;51(2):143–146. doi:10.1136/gut.51.2.143
  • Nguyen CM, Mendes MA, Ma JD. Thiopurine methyltransferase (TPMT) genotyping to predict myelosuppression risk. PLoS Curr. 2011;3:RRN1236. doi:10.1371/currents.RRN1236
  • Stanulla M, Schaeffeler E, Flohr T, et al. Thiopurine methyltransferase (TPMT) genotype and early treatment response to mercaptopurine in childhood acute lymphoblastic leukemia. JAMA. 2005;293(12):1485–1489. doi:10.1001/jama.293.12.1485
  • McLeod HL, Krynetski EY, Relling MV, Evans WE. Genetic polymorphism of thiopurine methyltransferase and its clinical relevance for childhood acute lymphoblastic leukemia. Leukemia. 2000;14(4):567–572. doi:10.1038/sj.leu.2401723
  • Jena A, Jha DK, Kumar MP, et al. Prevalence of polymorphisms in thiopurine metabolism and association with adverse outcomes: a South Asian region-specific systematic review and meta-analysis. Expert Rev Clin Pharmacol. 2021;14(4):491–501. doi:10.1080/17512433.2021.1900729
  • Schwarz UI, Woldanski-Travaglini M, Swanston V, et al. Thiopurine methyltransferase intermediate metabolizer status and thiopurine-associated toxicity during maintenance therapy in childhood acute lymphoblastic leukemia. Clin Pharmacol Ther. 2023;113(6):1326–1336. doi:10.1002/cpt.2894
  • Lennard L. Implementation of TPMT testing. Br J Clin Pharmacol. 2014;77(4):704–714. doi:10.1111/bcp.12226
  • Conneely SE, Cooper SL, Rau RE. Use of allopurinol to mitigate 6-mercaptopurine associated gastrointestinal toxicity in acute lymphoblastic leukemia. Front Oncol. 2020;10:1129. doi:10.3389/fonc.2020.01129
  • Almoguera B, Vazquez L, Connolly JJ, et al. Imputation of TPMT defective alleles for the identification of patients with high-risk phenotypes. Front Genet. 2014;5:96. doi:10.3389/fgene.2014.00096