136
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Classification and Regression Tree Predictive Model for Acute Kidney Injury in Traumatic Brain Injury Patients

, , & ORCID Icon
Pages 139-149 | Received 18 Sep 2023, Accepted 30 Jan 2024, Published online: 22 Feb 2024

References

  • Corral L, Javierre CF, Ventura JL, Marcos P, Herrero JI, Manez R. Impact of non-neurological complications in severe traumatic brain injury outcome. Critical Care. 2012;16(2):R44. doi:10.1186/cc11243
  • Ahmed M, Sriganesh K, Vinay B, Umamaheswara Rao GS. Umamaheswara Rao, Acute kidney injury in survivors of surgery for severe traumatic brain injury: incidence, risk factors, and outcome from a tertiary neuroscience center in India. Br J Neurosurg. 2015;29(4):544–548. doi:10.3109/02688697.2015.1016892
  • Robba C, Banzato E, Rebora P, et al. Acute kidney injury in traumatic brain injury patients: results from the collaborative European neurotrauma effectiveness research in traumatic brain injury study. Crit Care Med. 2021;49(1):112–126. doi:10.1097/CCM.0000000000004673
  • Li N, Zhao WG, Xu FL, Zhang WF, Gu WT. Neutrophil gelatinase-associated lipocalin as an early marker of acute kidney injury in patients with traumatic brain injury. J Nephrol. 2013;26(6):1083–1088. doi:10.5301/jn.5000282
  • Moore EM, Bellomo R, Nichol A, Harley N, Macisaac C, Cooper DJ. The incidence of acute kidney injury in patients with traumatic brain injury. Renal Failure. 2010;32(9):1060–1065. doi:10.3109/0886022X.2010.510234
  • Li N, Zhao WG, Zhang WF. Acute kidney injury in patients with severe traumatic brain injury: implementation of the acute kidney injury network stage system. Neurocritical Care. 2011;14(3):377–381. doi:10.1007/s12028-011-9511-1
  • Skrifvars MB, Moore E, Martensson J, et al. Erythropoietin in traumatic brain injury associated acute kidney injury: a randomized controlled trial. Acta Anaesthesiol Scandinavica. 2019;63(2):200–207. doi:10.1111/aas.13244
  • Büttner S, Stadler A, Mayer C, et al. Incidence, risk factors, and outcome of acute kidney injury in neurocritical care. J Int Care Med. 2020;35(4):338–346. doi:10.1177/0885066617748596
  • An S, Luo H, Wang J, et al. An acute kidney injury prediction nomogram based on neurosurgical intensive care unit profiles. Ann Translat Med. 2020;8(5):194. doi:10.21037/atm.2020.01.60
  • Deng Y, Yuan J, Chi R, et al. The incidence, risk factors and outcomes of postoperative acute kidney injury in neurosurgical critically ill patients. Sci Rep. 2017;7(1):4245. doi:10.1038/s41598-017-04627-3
  • Wang RR, He M, Gui X, Kang Y. A nomogram based on serum cystatin C for predicting acute kidney injury in patients with traumatic brain injury. Renal Failure. 2021;43(1):206–215. doi:10.1080/0886022X.2021.1871919
  • Wang RR, He M, Ou XF, Xie XQ, Kang Y. The predictive value of serum uric acid on acute kidney injury following traumatic brain injury. Biomed Res Int. 2020;2020:2874369. doi:10.1155/2020/2874369
  • Yamane DP, Maghami S, Graham A, Vaziri K, Davison D. Association of hyperchloremia and acute kidney injury in patients with traumatic brain injury. J Int Care Med. 2020;3:885066620978735.
  • Liu NT, Salinas J. Machine learning for predicting outcomes in trauma. Shock. 2017;48(5):504–510. doi:10.1097/SHK.0000000000000898
  • Hanko M, Snopko P, Opšenák R, et al. Random forest-based prediction of outcome and mortality in patients with traumatic brain injury undergoing primary decompressive craniectomy. World Neurosurg. 2021;148:e450–e458. doi:10.1016/j.wneu.2021.01.002
  • Matsuo K, Aihara H, Nakai T, Morishita A, Tohma Y, Kohmura E. Machine Learning to Predict In-Hospital Morbidity and Mortality after Traumatic Brain Injury. J Neurotrauma. 2020;37(1):202–210. doi:10.1089/neu.2018.6276
  • Abujaber A, Gammoh A, Abdelrahman H, Mollazehi M, El-Menyar A. Prediction of in-hospital mortality in patients with post traumatic brain injury using National trauma registry and machine learning approach. Scandina J Trauma Resuscit Emer Med. 2020;28(1):44. doi:10.1186/s13049-020-00738-5
  • Abujaber A, Gammoh D, Abdelrahman H, Mollazehi M, El-Menyar A. Prediction of in-hospital mortality in patients on mechanical ventilation post traumatic brain injury: machine learning approach. BMC Med Inf Decis Making. 2020;20(1):336. doi:10.1186/s12911-020-01363-z
  • Rau CS, Kuo PJ, Chien PC, Huang CY, Hsieh HY. Mortality prediction in patients with isolated moderate and severe traumatic brain injury using machine learning models. PLoS One. 2018;13(11):e0207192. doi:10.1371/journal.pone.0207192
  • Hostettler IC, Muroi C, Richter JK, et al. Decision tree analysis in subarachnoid hemorrhage: prediction of outcome parameters during the course of aneurysmal subarachnoid hemorrhage using decision tree analysis. J Neurosurg. 2018;129(6):1499–1510. doi:10.3171/2017.7.JNS17677
  • Phan TG, Chen J, Singhal S, et al. Exploratory use of decision tree analysis in classification of outcome in hypoxic-ischemic brain injury. Front Neurol. 2018;9:126. doi:10.3389/fneur.2018.00126
  • Yang Q, Li J, Zhang Z, et al. Clinical characteristics and a decision tree model to predict death outcome in severe COVID-19 patients. BMC Infect Dis. 2021;21(1):783. doi:10.1186/s12879-021-06478-w
  • Brims FJ, Meniawy TM, Duffus I, et al. A novel clinical prediction model for prognosis in malignant pleural mesothelioma using decision tree analysis. J Thorac Oncol. 2016;11(4):573–582. doi:10.1016/j.jtho.2015.12.108
  • Lin KY, Shang XL, Guo YS, et al. Association of preprocedural hyperglycemia with contrast-induced acute kidney injury and poor outcomes after emergency percutaneous coronary intervention. Angiology. 2018;69(9):770–778. doi:10.1177/0003319718758140
  • Moriyama N, Ishihara M, Noguchi T, et al. Admission hyperglycemia is an independent predictor of acute kidney injury in patients with acute myocardial infarction. Circ J. 2014;78(6):1475–1480. doi:10.1253/circj.CJ-14-0117
  • Shacham Y, Gal-Oz A, Leshem-Rubinow E, et al. Admission glucose levels and the risk of acute kidney injury in nondiabetic ST segment elevation myocardial infarction patients undergoing primary percutaneous coronary intervention. Cardio Med. 2015;5(3):191–198. doi:10.1159/000430472
  • Naruse H, Ishii J, Hashimoto T, et al. Pre-procedural glucose levels and the risk for contrast-induced acute kidney injury in patients undergoing emergency coronary intervention. Circ J. 2012;76(8):1848–1855. doi:10.1253/circj.CJ-11-1248
  • Yang S, Su T, Huang L, et al. A novel risk-predicted nomogram for sepsis associated-acute kidney injury among critically ill patients. BMC Nephrol. 2021;22(1):173. doi:10.1186/s12882-021-02379-x
  • Rau CS, Wu SC, Chen YC, et al. Higher mortality in trauma patients is associated with stress-induced hyperglycemia, but not diabetic hyperglycemia: a cross-sectional analysis based on a propensity-score matching approach. Int J Environ Res Public Health. 2017;14:10.
  • Matovu P, Kirya M, Kiryabwire J, et al. Hyperglycemia in severe traumatic brain injury patients and its association with thirty-day mortality: a prospective observational cohort study in Uganda. PeerJ. 2021;9:e10589. doi:10.7717/peerj.10589
  • Tsai YC, Wu SC, Hsieh TM, et al. Association of stress-induced hyperglycemia and diabetic hyperglycemia with mortality in patients with traumatic brain injury: analysis of a propensity score-matched population. Int J Environ Res Public Health. 2020;17(12):4266. doi:10.3390/ijerph17124266
  • Rau CS, Wu SC, Chen YC, et al. Stress-induced hyperglycemia, but not diabetic hyperglycemia, is associated with higher mortality in patients with isolated moderate and severe traumatic brain injury: analysis of a propensity score-matched population. Int J Environ Res Public Health. 2017;14:11.
  • Bosarge PL, Shoultz TH, Griffin RL, Kerby JD. Stress-induced hyperglycemia is associated with higher mortality in severe traumatic brain injury. J Trauma Acute Care Surg. 2015;79(2):289–294. doi:10.1097/TA.0000000000000716
  • Diebel LN, Martin JV, Liberati DM, Liberati DM. Acute hyperglycemia exacerbates trauma-induced endothelial and glycocalyx injury: an in vitro model. J Trauma Acute Care Surg. 2018;85(5):960–967. doi:10.1097/TA.0000000000001993
  • Joung KW, Choi SS, Kong YG, Yu J, Lim J, Kim YK. Incidence and risk factors of acute kidney injury after radical cystectomy: importance of preoperative serum uric acid level. Int J Med Sci. 2015;12(7):599–604. doi:10.7150/ijms.12106
  • Ejaz AA, Beaver TM, Shimada M, et al. Uric acid: a novel risk factor for acute kidney injury in high-risk cardiac surgery patients? Am j Nephrol. 2009;30(5):425–429. doi:10.1159/000238824
  • Wang X, Xie B, Huang R, et al. Early serum cystatin C-enhanced risk prediction for acute kidney injury post cardiac surgery: a prospective, observational, cohort study. Biomarkers. 2020;25(1):20–26. doi:10.1080/1354750X.2019.1688865
  • El-Sadek AE, El-Gamasy MA, Behiry EG, Torky AA, Fathy MA. Plasma cystatin C versus renal resistive index as early predictors of acute kidney injury in critically ill neonates. J Pediatr Urol. 2020;16(2):206.e1–206.e8. doi:10.1016/j.jpurol.2019.12.001
  • Maiwall R, Kumar A, Kumar G, Bhadoria AS, Sarin SK, Sarin SK. Cystatin C predicts acute kidney injury and mortality in cirrhotics: a prospective cohort study. Liver Int. 2018;38(4):654–664. doi:10.1111/liv.13600
  • Zappitelli M, Krawczeski CD, Devarajan P, et al. Early postoperative serum cystatin C predicts severe acute kidney injury following pediatric cardiac surgery. Kidney Int. 2011;80(6):655–662. doi:10.1038/ki.2011.123
  • Krawczeski CD, Vandevoorde RG, Kathman T, et al. Serum cystatin C is an early predictive biomarker of acute kidney injury after pediatric cardiopulmonary bypass. Clin J Am Soc Nephrol. 2010;5(9):1552–1557. doi:10.2215/CJN.02040310
  • Kaufeld T, Foerster KA, Schilling T, et al. Preoperative serum uric acid predicts incident acute kidney injury following cardiac surgery. BMC Nephrol. 2018;19(1):161. doi:10.1186/s12882-018-0970-x
  • Mandurino-Mirizzi A, Kajana V, Cornara S, et al. Elevated serum uric acid is a predictor of contrast associated acute kidney injury in patient with ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention, Nutrition, metabolism, and cardiovascular diseases. NMCD. 2021;31(7):2140–2143. doi:10.1016/j.numecd.2021.04.002
  • Suetrong B, Pisitsak C, Boyd JH, Russell JA, Walley KR. Hyperchloremia and moderate increase in serum chloride are associated with acute kidney injury in severe sepsis and septic shock patients. Critical Care. 2016;20(1):315. doi:10.1186/s13054-016-1499-7
  • Sadan O, Singbartl K, Kandiah PA, Martin KS, Samuels OB. Hyperchloremia is associated with acute kidney injury in patients with subarachnoid hemorrhage. Crit Care Med. 2017;45(8):1382–1388. doi:10.1097/CCM.0000000000002497
  • Oh TK, Jeon YT, Sohn H, et al. Association of perioperative hyperchloremia and hyperchloremic metabolic acidosis with acute kidney injury after craniotomy for intracranial hemorrhage. World Neurosurg. 2019;125:e1226–e1240. doi:10.1016/j.wneu.2019.02.015
  • Oh TK, Kim CY, Jeon YT, Hwang JW, Do SH. Perioperative hyperchloremia and its association with postoperative acute kidney injury after craniotomy for primary brain tumor resection: a retrospective observational study. J Neurosurg Anesthesiol. 2019;31(3):311–317. doi:10.1097/ANA.0000000000000512
  • Lombardi G, Ferraro PM, Bargagli M, Naticchia A, D’Alonzo S, Gambaro G. Hyperchloremia and acute kidney injury: a retrospective observational cohort study on a general mixed medical-surgical not ICU-hospitalized population. Int Emerg Med. 2020;15(2):273–280. doi:10.1007/s11739-019-02165-6
  • Stenson EK, Cvijanovich NZ, Allen GL, et al. Hyperchloremia is associated with acute kidney injury in pediatric patients with septic shock. Intensive Care Med. 2018;44(11):2004–2005. doi:10.1007/s00134-018-5368-5
  • Wilcox CS. Regulation of renal blood flow by plasma chloride. J Clin Invest. 1983;71(3):726–735. doi:10.1172/JCI110820
  • Chowdhury AH, Cox EF, Francis ST, Lobo DN. A randomized, controlled, double-blind crossover study on the effects of 2-L infusions of 0.9% saline and plasma-lyte® 148 on renal blood flow velocity and renal cortical tissue perfusion in healthy volunteers. Ann Surg. 2012;256(1):18–24. doi:10.1097/SLA.0b013e318256be72
  • Raj R, Luostarinen T, Pursiainen E, et al. Machine learning-based dynamic mortality prediction after traumatic brain injury. Sci Rep. 2019;9(1):17672. doi:10.1038/s41598-019-53889-6
  • Hsu SD, Chao E, Chen SJ, Hueng DY, Lan HY, Chiang HH. Machine learning algorithms to predict in-hospital mortality in patients with traumatic brain injury. J Personal Med. 2021;11(11):1144. doi:10.3390/jpm11111144
  • Sun D, Zhao H, Zhang Z. Classification and regression tree (CART) model to assist clinical prediction for tracheostomy in patients with traumatic cervical spinal cord injury: a 7-year study of 340 patients. Eur Spine J. 2022;31(5):1283–1290. doi:10.1007/s00586-022-07154-6
  • Achenbach P, Hippich M, Zapardiel-Gonzalo J, et al. A classification and regression tree analysis identifies subgroups of childhood type 1 diabetes. EBioMedicine. 2022;82:104118. doi:10.1016/j.ebiom.2022.104118