104
Views
4
CrossRef citations to date
0
Altmetric
Review

Targeting Cardiac Metabolic Pathways: A Role in Ischemic Management

ORCID Icon, , ORCID Icon & ORCID Icon
Pages 353-365 | Published online: 14 Sep 2020

References

  • Kaptoge S, Pennells L, De Bacquer D; The WHO CVD Risk Chart Working Group. World Health Organization cardiovascular disease risk charts: revised models to estimate risk in 21 global regions. Lancet Glob Health. 2019;7:e1332–45. doi:10.1016/S2214-109X(19)30318-3
  • Sakboonyarat B, Rangsin R. Prevalence and associated factors of ischemic heart disease (IHD) among patients with diabetes mellitus: a nationwide, cross-sectional survey. BMC Cardiovasc Disord. 2018;18(151):1–7.
  • Alexandra N, et al. Mortality from Ischemic Heart Disease. Circ Cardiovasc Qual Outcomes. 2019;12(6).
  • Roth GA, Johnson C, Abajobir A, et al. Global, regional, and national burden of cardiovascular, Diseases for 10 Causes, 1990 to 2015. J Am Coll Cardiol. 2017;70(1):1–25. doi:10.1016/j.jacc.2017.04.052
  • Kaski JC, FCrea F, Gersh BJ, Paolo G. Reappraisal of Ischemic Heart Disease. Circulation. 2018;138(14):1463–1480. doi:10.1161/CIRCULATIONAHA.118.031373
  • Pepine J, Wilmer W, Nichols. The pathophysiology of chronic ischemic heart disease. Clin Cardiol. 2007;30(Suppl.I):I-4–I-9. doi:10.1002/clc.20048
  • Balla C, Pavasini R, Ferrari R. Treatment of angina: where are we? Cardiology. 2018;140(1):52–67. doi:10.1159/000487936
  • Leea L, John H, Michael F.Metabolic manipulation in ischemic heart disease, a novel approach to treatment. Eur Heart J. 2004;25:634–641.
  • Panel M, Ghaleh B, Morin D. Mitochondria and aging: a role for the mitochondrial transition pore? Aging Cell. 2018;1–15.
  • Pietrocola F, Lorenzo L, Manuel Bravo-San Pedro J, Madeo F, Kroemer G. Acetyl Coenzyme A: a central metabolite and second messenger. Cell Metab. 2015;21:805–821. doi:10.1016/j.cmet.2015.05.014
  • Fink BN. The PPAR regulatory system in cardiac physiology and disease. Cardiovasc Res. 2007;73(7):269–277. doi:10.1016/j.cardiores.2006.08.023
  • Ussher J, Lopaschuk G. The Malonyl CoA axis as a potential target for treating ischemic heart disease. Cardiovasc Res Advan. 2008;79(2):259–268. doi:10.1093/cvr/cvn130
  • Lopaschuk G, et al. Fatty acid metabolism in health and disease. Physiol Rev. 2010;90:207–258. doi:10.1152/physrev.00015.2009
  • Sharpe AJ, McKenzie M. Mitochondrial fatty acid oxidation disorders associated with short-chain Enoyl-CoA Hydratase (ECHS1) deficiency. Cells. 2018;7(46):1–13. doi:10.3390/cells7060046
  • Agdip S, et al. Optimizing cardiac energy substrate metabolism: a novel therapeutic intervention for ischemic heart disease. Heart Metab. 2008;38:5–14.
  • Nagoshi T, Yoshimura M, Rosano G, et al. Optimization of cardiac metabolism in heart failure. Curr Pharm Des. 2011;17(35):3846–3853. doi:10.2174/138161211798357773
  • Lee L, Horowitz J, Frenneaux M. Metabolic manipulation in ischaemic heart disease, a novel approach to treatment. Eur Heart J. 2004;25(80):634–641.
  • Gao Q, Deng H, Li H, et al. Glycolysis and fatty acid β-oxidation, which one is the culprit of ischemic reperfusion injury? Int J Clin Exp Med. 2018;11(1):59–68.
  • Karwi OG, Uddin GM, Ho KL, Lopaschuk GD. Loss of metabolic flexibility in the failing heart. Front Cardiovasc Med. 2018;5(68):1–13. doi:10.3389/fcvm.2018.00068
  • Lopaschuk GD. Metabolic changes in the acutely ischemic heart. Heart Metab. 2016;70:32–35.
  • Lionetti V, Stanley WC, Recchia FA. Modulating fatty acid oxidation in heart failure. Cardiovasc Res. 2011;90:202–209. doi:10.1093/cvr/cvr038
  • Folmes C, Sowah D, Clanachan A, Lopaschuk G. High rates of residual fatty acid oxidation during mild ischemia decrease cardiac work and efficiency. J Mol Cell Cardiol. 2009;47:142–148. doi:10.1016/j.yjmcc.2009.03.005
  • Natasha Fillmore N, Lopaschuk GD. Malonyl CoA: a promising target for the treatment of cardiac disease. 2014. Int Union Biochem Mol Biol. 2014;66(3):139–146.
  • Pauly D, Pipen J. Ischemic heart disease: metabolic approaches to management. Clin Cardiol. 2004;27:439–444. doi:10.1002/clc.4960270802
  • Horváth, Horváth B, Hézső T, et al. Late sodium current inhibitors as potential antiarrhythmic agents. Front Pharmacol. 2020;11(413):1–17. doi:10.3389/fphar.2020.00413
  • Kuntz MJ, Harris RA. Pyruvate Dehydrogenase Kinase. In: Choi S, editor. Encyclopedia of Signaling Molecules. New York, NY: Springer; 2018. https://doi.org/10.1007/978-1-4614-6438-9_101636-2.
  • Richard C. Partial Fatty Acid Oxidation (pFOX) inhibition: a new therapy for chronic stable angina. Clin Cardiol. 2003;26:161–162. doi:10.1002/clc.4960260402
  • Antzelevitch C, Belardinelli L, Zygmunt AC, et al. Electrophysiological effects of ranolazine, a novel antianginal agent with antiarrhythmic properties. Circulation. 2004;110:904–910. doi:10.1161/01.CIR.0000139333.83620.5D
  • Podbregar M, Voga G. Effect of selective and nonselective beta-blockers on resting energy production rate and total body substrate utilization in chronic heart failure. J Card Fail. 2002;8:369–378. doi:10.1054/jcaf.2002.130238
  • Teitelbaum J. Enhancing Mitochondrial Function with D-Ribose. Integrative Med. 2008;7:2.
  • Mamas MA, Neyses L, Fath-Ordoubadi F, et al. A meta-analysis of glucose-insulin-potassium therapy for treatment of acute myocardial infarction. Exp Clin Cardiol. 2010;15:2.
  • Vlasselaers D. Gluco-insulin-potassium: much more than enriched myocardial fuel. Circulation. 2011;123(2):129–130. doi:10.1161/CIRCULATIONAHA.110.002709
  • Vander Horst J, Zijlstra F, Van’t Hof AWJ. Glucose-insulin-potassium infusion in patients treated with primary angioplasty for acute myocardial infarction (GIPS): a randomized trial. J Am Coll Cardiol. 2003;42:784–791. doi:10.1016/S0735-1097(03)00830-1
  • Legtenberg R, Houston R, Oeseburg B, Smits P. Physiological insulin concentrations protect against ischemia-induced loss of cardiac function in rats. Comp Biochem Physiol Mol Integr Physiol. 2002;132:161–167. doi:10.1016/S1095-6433(01)00543-8
  • Ahmed W, et al. PPARs and their metabolic modulation: new mechanisms for transcriptional regulation. J Int Med. 2007;262(2):184–198. doi:10.1111/j.1365-2796.2007.01825.x
  • Abdelrahman M, Sivarajah A, Thiemermann C, et al. Beneficial effects of PPAR-g ligands in ischemia–reperfusion injury, inflammation and shock. Cardiovasc Res. 2005;65:772–778. doi:10.1016/j.cardiores.2004.12.008
  • Desvergne B, Michalik L, Wahli W. Transcriptional regulation of metabolism. Physiol Rev. 2006;86:465–514. doi:10.1152/physrev.00025.2005
  • Yue, W Bao, BM Jucker, et al. Activation of peroxisome proliferator–activated receptor-protects the heart from ischemia/reperfusion injury. Circulation. 2003;11.
  • Huang JV, Greyson CR, Schwartz GG. PPAR-as a therapeutic target in cardiovascular disease: evidence and uncertainty. J Lipid Res. 2012;53.
  • EFSA Panel on Dietetic Products. Scientific opinion on dietary reference values for niacin. EFSA J. 2014;12(7):3759. doi:10.2903/j.efsa.2014.3759
  • Markel A, et al. The resurgence of niacin: from nicotinic acid to niaspan/laropiprant. IMAJ. 2011;13.
  • Carlso L. Nicotinic acid: the broad-spectrum lipid drug. A 50th anniversary review. J Intern Med. 2005;258:94–114. doi:10.1111/j.1365-2796.2005.01528.x
  • Sang J, Weon K. Mechanism of ischemia and reperfusion injury to the heart: from the viewpoint of nitric oxide and mitochondria. Chonnam Med J. 2010;46(3):129–139. doi:10.4068/cmj.2010.46.3.129
  • Patel BP, Rawal UM, Dave TK, et al. Lipid peroxidation, total antioxidant status and total thiol levels predict overall survival in patients with oral squamous cell carcinoma. Invest Cancer Ther. 2007;6(4):365–372. doi:10.1177/1534735407309760
  • Soares, Soares ROS, Losada DM, et al. Ischemia/reperfusion injury revisited: an overview of the latest pharmacological strategies. Int J Mol Sci. 2019;20(5034):1–45. doi:10.3390/ijms20205034
  • Nojiri S, Daida H, Mokuno H. Association of serum antioxidant capacity with coronary artery disease in middle-aged men. Heart J. 2001;42:677–690.
  • Wimmer NJ, Stone PH. Anti-anginal and anti-ischemic effects of late sodium current inhibition. Cardiovasc Drugs Ther. 2013;27(1):69–77. doi:10.1007/s10557-012-6431-z
  • Ramachandra CJA, Hernandez-Resendiz S, Crespo-Avilan GE, et al. Mitochondria in acute myocardial infarction and cardioprotection. EBioMedicine. 2020;57(2020):102884. doi:10.1016/j.ebiom.2020.102884
  • Nan J, Zhu W, Rahman MS, et al. Molecular regulation of mitochondrial dynamics in cardiac disease. Biochim Biophys Acta. 2017;1864:1260–1273. doi:10.1016/j.bbamcr.2017.03.006
  • Boyman L, Karbowski M, Lederer WJ. Regulation of mitochondrial ATP production: ca2+ signaling and quality control. Trends Mol Med. 2020;2020(26):21–39. doi:10.1016/j.molmed.2019.10.007
  • Wang J, Zhou H. Mitochondrial quality control mechanisms as molecular targets in cardiac ischemia-reperfusion injury. Acta Pharm Sin B. 2020. doi:10.1016/j.apsb.2020.03.004
  • Fu W, Liu Y, Yin H. Mitochondrial dynamics: biogenesis, fission, fusion, and mitophagy in the regulation of stem cell behaviors. Hindawi. 2019;2019(9757201):1–15.
  • Maneechote C, Siripong Palee S, Chattipakorn SC, Chattipakorn N. Roles of mitochondrial dynamics modulators in cardiac ischaemia/reperfusion injury. J Cell Mol Med. 2017;21(11):2643–2653. doi:10.1111/jcmm.13330
  • Carreira RS, Lee P, Gottlieb RA. Mitochondrial therapeutics for cardioprotection. Curr Pharm Des. 2011;17(20):2017–2035. doi:10.2174/138161211796904777
  • Gao D, Zhang L, Dhillon R, et al. Dynasore protects mitochondria and improves cardiac lusitropy in Langendorff perfused mouse heart. PLoS One. 2013;8:e60967. doi:10.1371/journal.pone.0060967
  • Disatnik MH, Ferreira JC, Campos JC, et al. Acute inhibition of excessive mitochondrial fission after myocardial infarction prevents long-term cardiac dysfunction. J Am Heart Assoc. 2013;2:e000461. doi:10.1161/JAHA.113.000461
  • Sharp WW, Fang YH, Han M, et al. Dynamin-related protein 1 (Drp1)-mediated diastolic dysfunction in myocardial ischemia-reperfusion injury: therapeutic benefits of Drp1 inhibition to reduce mitochondrial fission. FASEB J. 2014;28:316–326. doi:10.1096/fj.12-226225
  • Shimizu Y, Lambert JP, Nicholson CK, et al. DJ-1 protects the heart against ischemia-reperfusion injury by regulating mitochondrial fission. J Mol Cell Cardiol. 2016;97:56–66. doi:10.1016/j.yjmcc.2016.04.008
  • Ong SB, Subrayan S, Lim SY, et al. Inhibiting mitochondrial fission protects the heart against ischemia/reperfusion injury. Circulation. 2010;121:2012–2022. doi:10.1161/CIRCULATIONAHA.109.906610
  • Din S, Mason M, Volkers M, et al. Pim-1 preserves mitochondrial morphology by inhibiting dynamin-related protein 1 translocation. Proc Natl Acad Sci USA. 2013;110:5969–5974. doi:10.1073/pnas.1213294110
  • Hall AR, Burke N, Dongworth RK, et al. Hearts deficient in both Mfn1 and Mfn2 are protected against acute myocardial infarction. Cell Death Dis. 2016;7:e2238. doi:10.1038/cddis.2016.139
  • Yang Y, Li T, Li Z, Liu N, Yan Y, Liu B. Role of mitophagy in cardiovascular disease. Aging Dis. 2020;11(2):419–437. doi:10.14336/AD.2019.0518
  • Redmann M, Dodson M, Boyer-Guittaut M, Darley-Usmar V, Zhang J. Mitophagy mechanisms and role in human diseases. Int J Biochem Cell Biol. 2014;53:127–133. doi:10.1016/j.biocel.2014.05.010
  • Guzy RD, Schumacker PT. O_2 sensing by mitochondria at complex III: the paradox of increased reactive O_2 species during hypoxia. Exp Physiol. 2006;91:807–819. doi:10.1113/expphysiol.2006.033506
  • Chu D, Zhang Z. Trichosanthis pericarpium aqueous extract protects H9c2 Cardiomyocytes from Hypoxia/ReO_2ation Injury by Regulating PI3K/Akt/NO pathway. Molecules. 2018;23:2409. doi:10.3390/molecules23102409
  • Yuan, Yuan X, Juan Z, et al. Clemastine fumarate protects against myocardial ischemia reperfusion injury by Activating the TLR4/PI3K/Akt signaling pathway. Front Pharmacol. 2020;11:28. doi:10.3389/fphar.2020.00028
  • Zhang, Zhang L, Li Y, et al. The PI3K subunits, P110α and P110β are potential targets for overcoming P-gp and BCRP-mediated MDR in cancer. Mol Cancer. 2020;19(1):10. doi:10.1186/s12943-019-1112-1
  • Gang S, Sun G, Liu H, Shu L, Zhang W, Liang Z. Prokineticin 2 relieves hypoxia/reO_2ation-induced injury through activation of Akt/mTOR pathway in H9c2 cardiomyocytes. Artif Cells Nanomed Biotechnol. 2020;48:345–352. doi:10.1080/21691401.2019.1709850
  • Hill BG, et al. Bioenergetics and translational metabolism: implications for genetics. Physiol Prec Med Biol Chem. 2020;401(1):3–29.
  • Nadtochiy SM, Schafer X, Fu D, Nehrke K, Munger J, Brookes PS. Acidic pH is a metabolic switch for 2-hydroxyglutarate generation and signaling. J Biol Chem. 2016;291:20188–20197. doi:10.1074/jbc.M116.738799
  • Rzem R, Achouri Y, Marbaix E, et al. A mouse model of L-2-hydroxyglutaric aciduria, a disorder of metabolite repair. PLoS One. 2015;10:e0119540. doi:10.1371/journal.pone.0119540
  • Fessel JP, Oldham WM. Pyridine dinucleotides from molecules to man. Antioxid Redox Signal. 2018;28:180–212. doi:10.1089/ars.2017.7120
  • Husted AS, Trauelsen M, Rudenko O, Hjorth SA, Schwartz TW. GPCR-mediated signaling of metabolites. Cell Metab. 2017;25:777–796. doi:10.1016/j.cmet.2017.03.008