172
Views
6
CrossRef citations to date
0
Altmetric
Original Research

Obesity and Preoperative Anaemia as Independent Risk Factors for Sternal Wound Infection After Coronary Artery Bypass Graft Surgery with Pedicled (Non-Skeletonized) Internal Mammary Arteries: The Role of Thoracic Wall Ischemia?

, , , , , , , & show all
Pages 553-559 | Published online: 15 Dec 2020

References

  • Carbone S, Canada JM, Billingsley HE, Siddiqui MS, Elagizi A, Lavie CJ. Obesity paradox in cardiovascular disease: where do we stand? Vasc Health Risk Manag. 2019;15:89–100. doi:10.2147/VHRM.S168946
  • Mohr FW, Morice MC, Kappetein AP, et al. Coronary artery bypass graft surgery versus percutaneous coronary intervention in patients with three-vessel disease and left main coronary disease: 5-year follow-up of the randomised, clinical SYNTAX trial. Lancet. 2013;381(9867):629–638. doi:10.1016/S0140-6736(13)60141-5
  • Koshal A, Hendry P, Raman SV, Keon WJ. Should obese patients not undergo coronary artery surgery? Can J Surg. 1985;28(4):331–334.
  • Goldman S, Zadina K, Moritz T, et al. Long-term patency of saphenous vein and left internal mammary artery grafts after coronary artery bypass surgery: results from a Department of Veterans Affairs Cooperative Study. J Am Coll Cardiol. 2004;44(11):2149–2156. doi:10.1016/j.jacc.2004.08.064
  • Sá MP, Cavalcanti PE, de Andra de Costa Santos HJ, et al. Skeletonized versus pedicled bilateral internal mammary artery grafting: outcomes and concerns analyzed through a meta-analytical approach. Int J Surg. 2015;16(Pt B):146–152. doi:10.1016/j.ijsu.2014.10.019
  • Bode LG, Kluytmans JA, Wertheim HF, et al. Preventing surgical-site infections in nasal carriers of Staphylococcus aureus. N Engl J Med. 2010;362(1):9–17. doi:10.1056/NEJMoa0808939
  • Lemaignen A, Birgand G, Ghodhbane W, et al. Sternal wound infection after cardiac surgery: incidence and risk factors according to clinical presentation. Clin Microbiol Infect. 2015;21(7):674.e11–8. doi:10.1016/j.cmi.2015.03.025
  • Sajja LR. Strategies to reduce deep sternal wound infection after bilateral internal mammary artery grafting. Int J Surg. 2015;16(Pt B):171–178. doi:10.1016/j.ijsu.2014.11.017
  • Ruka E, Dagenais F, Mohammadi S, Chauvette V, Poirier P, Voisine P. Bilateral mammary artery grafting increases postoperative mediastinitis without survival benefit in obese patients. Eur J Cardiothorac Surg. 2016;50(6):1188–1195. doi:10.1093/ejcts/ezw164
  • Pevni D, Medalion B, Mohr R, et al. Should bilateral internal thoracic artery grafting be used in patients with diabetes mellitus? Ann Thorac Surg. 2017;103(2):551–558. doi:10.1016/j.athoracsur.2016.06.044
  • Taggart DP, Benedetto U, Gerry S, et al. Bilateral versus single internal-thoracic-artery grafts at 10 years. N Engl J Med. 2019;380(5):437–446. doi:10.1056/NEJMoa1808783
  • Dai C, Lu Z, Zhu H, Xue S, Lian F. Bilateral internal mammary artery grafting and risk of sternal wound infection: evidence from observational studies. Ann Thorac Surg. 2013;95(6):1938–1945. doi:10.1016/j.athoracsur.2012.12.038
  • Oswald I, Boening A, Pons-Kuehnemann J, Grieshaber P. Wound infection after CABG using internal mammary artery grafts: a meta-analysis. Thorac Cardiovasc Surg. 2020.
  • Bellomo R, Ronco C, Kellum JA, et al. Acute renal failure – definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit Care. 2004;8(4):R204–R212. doi:10.1186/cc2872
  • Mayhew D, Mendonca V, Murthy BVS. A review of ASA physical status - historical perspectives and modern developments. Anaesthesia. 2019;74(3):373–379. doi:10.1111/anae.14569
  • Culver DH, Horan TC, Gaynes RP, et al. Surgical wound infection rates by wound class, operative procedure, and patient risk index. Am J Med. 1991;91(3B):152S–157S. doi:10.1016/0002-9343(91)90361-Z
  • Le Gall JR, Lemeshow S, Saulnier F. A new simplified acute physiology score (SAPS II) based on a European/North American multicenter study. JAMA. 1993;270(24):2957–2963. doi:10.1001/jama.1993.03510240069035
  • Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis. 1987;40(5):373–383. doi:10.1016/0021-9681(87)90171-8
  • Terada T, Johnson JA, Norris C, et al. Severe obesity is associated with increased risk of early complications and extended length of stay following coronary artery bypass grafting surgery. J Am Heart Assoc. 2016;5(6):pii: e003282. doi:10.1161/JAHA.116.003282
  • Vargo PR, Steffen RJ, Bakaeen FG, Navale S, Soltesz EG. The impact of obesity on cardiac surgery outcomes. J Card Surg. 2018;33(10):588–594. doi:10.1111/jocs.13793
  • Ghanta RK, LaPar DJ, Zhang Q, et al. Obesity increases risk-adjusted morbidity, mortality, and cost following cardiac surgery. J Am Heart Assoc. 2017;6(3):e003831. doi:10.1161/JAHA.116.003831
  • Chan PG, Sultan I, Gleason TG, et al. Contemporary outcomes of coronary artery bypass grafting in obese patients. J Card Surg. 2020;35(3):549–556. doi:10.1111/jocs.14415
  • Williams ML, He X, Rankin JS, Slaughter MS, Gammie JS. Preoperative hematocrit is a powerful predictor of adverse outcomes in coronary artery bypass graft surgery: a report from the society of thoracic surgeons adult cardiac surgery database. Ann Thorac Surg. 2013;96(5):1628–1634. doi:10.1016/j.athoracsur.2013.06.030
  • Vranken NP, Weerwind PW, Barenbrug PJ, Teerenstra S, Ganushchak YM, Maessen JG. The role of patient’s profile and allogeneic blood transfusion in development of post-cardiac surgery infections: a retrospective study. Interact Cardiovasc Thorac Surg. 2014;19(2):232–238. doi:10.1093/icvts/ivu096
  • Fowler AJ, Ahmad T, Phull MK, Allard S, Gillies MA, Pearse RM. Meta-analysis of the association between preoperative anaemia and mortality after surgery. Br J Surg. 2015;102(11):1314–1324. doi:10.1002/bjs.9861
  • Narayan P, Kshirsagar SN, Mandal CK, et al. Preoperative glycosylated hemoglobin: a risk factor for patients undergoing coronary artery bypass. Ann Thorac Surg. 2017;104(2):606–612. doi:10.1016/j.athoracsur.2016.12.020
  • Khan MR, Khan H, Wahab A, et al. Effect of glycemic control on mortality and infections in patients undergoing coronary artery bypass grafting: a Genesee County experience. J Community Hosp Intern Med Perspect. 2019;9(2):74–79. doi:10.1080/20009666.2019.1581044
  • Biancari F, Giordano S. Glycated hemoglobin and the risk of sternal wound infection after adult cardiac surgery: a systematic review and meta-analysis. Semin Thorac Cardiovasc Surg. 2019;31(3):465–467. doi:10.1053/j.semtcvs.2019.02.029
  • Sá MP, Ferraz PE, Soares AF, et al. Development and validation of a stratification tool for predicting risk of deep sternal wound infection after coronary artery bypass grafting at a Brazilian Hospital. Braz J Cardiovasc Surg. 2017;32(1):1–7.
  • Biancari F, Gatti G, Rosato S, et al. Preoperative risk stratification of deep sternal wound infection after coronary surgery. Infect Control Hosp Epidemiol. 2020;41(4):444–451. doi:10.1017/ice.2019.375
  • Ali U, Bibo L, Pierre M, et al. Deep sternal wound infections after cardiac surgery: a new Australian tertiary centre experience. Heart Lung Circ. 2020;29(10):1571–1578. doi:10.1016/j.hlc.2020.02.003
  • Bruno VD, Chivasso P, Rapetto F, et al. Impact of body mass index on short- and long-term outcomes after isolated first-time surgical aortic valve replacement for aortic stenosis. J Cardiothorac Vasc Anesth. 2019;33(11):2995–3000. doi:10.1053/j.jvca.2019.02.015
  • Kulier A, Levin J, Moser R, et al. Impact of preoperative anemia on outcome in patients undergoing coronary artery bypass graft surgery. Circulation. 2007;116(5):471–479. doi:10.1161/CIRCULATIONAHA.106.653501
  • Karkouti K, Wijeysundera DN, Beattie WS. Reducing Bleeding in Cardiac Surgery (RBC) Investigators. Risk associated with preoperative anemia in cardiac surgery: a multicenter cohort study. Circulation. 2008;117(4):478–484. doi:10.1161/CIRCULATIONAHA.107.718353
  • Miceli A, Romeo F, Glauber M, de Siena PM, Caputo M, Angelini GD. Preoperative anemia increases mortality and postoperative morbidity after cardiac surgery. J Cardiothorac Surg. 2014;9:137. doi:10.1186/1749-8090-9-137
  • Cutrell JB, Barros N, McBroom M, et al. Risk factors for deep sternal wound infection after cardiac surgery: influence of red blood cell transfusions and chronic infection. Am J Infect Control. 2016;44(11):1302–1309. doi:10.1016/j.ajic.2016.03.027
  • Campos IC, Tanganelli V, Maues HP, et al. Blood transfusion and increased perioperative risk in coronary artery bypass grafts. Braz J Cardiovasc Surg. 2017;32(5):394–400.
  • Takami Y, Tajima K, Masumoto H. Near-infrared spectroscopy for noninvasive evaluation of chest wall ischemia immediately after left internal thoracic artery harvesting. Gen Thorac Cardiovasc Surg. 2008;56(6):281–287. doi:10.1007/s11748-008-0238-7
  • Johnson DY, Johnson FE, Barner HB. Abdominal wall necrosis after harvest of both internal thoracic and inferior epigastric arteries. Ann Thorac Surg. 2011;91(1):38–41. doi:10.1016/j.athoracsur.2010.08.060
  • Wong MS, Kim J, Yeung C, Williams SH. Breast necrosis following left internal mammary artery harvest: a case series and a comprehensive review of the literature. Ann Plast Surg. 2008;61(4):368–374. doi:10.1097/SAP.0b013e3181640851
  • Phoon PHY, Hwang NC. Deep sternal wound infection: diagnosis, treatment and prevention. J Cardiothorac Vasc Anesth. 2020;34(6):1602–1613. doi:10.1053/j.jvca.2019.09.019
  • Alghamdi AA, Albanna MJ, Guru V, Brister SJ. Does the use of erythropoietin reduce the risk of exposure to allogeneic blood transfusion in cardiac surgery? A systematic review and meta-analysis. J Card Surg. 2006;21(3):320–326.