194
Views
0
CrossRef citations to date
0
Altmetric
Review

Metabolic Pathway of Cardiac Troponins and Its Diagnostic Value

ORCID Icon
Pages 153-180 | Published online: 25 Mar 2022

References

  • Smith JN, Negrelli JM, Manek MB, Hawes EM, Viera AJ. Diagnosis and management of acute coronary syndrome: an evidence-based update. J Am Board Fam Med. 2015;28(2):283–293. PMID: 25748771. doi:10.3122/jabfm.2015.02.140189
  • Henderson RA. Acute coronary syndrome: optimising management through risk assessment. Clin Med. 2013;13(6):602–606. PMID: 24298110; PMCID: PMC5873665. doi:10.7861/clinmedicine.13-6-602
  • Makki N, Brennan TM, Girotra S. Acute coronary syndrome. J Intensive Care Med. 2015;30(4):186–200. Epub 2013 Sep 18. PMID: 24047692. doi:10.1177/0885066613503294
  • Chaulin AM, Grigorieva V, Pavlova TV, Duplyakov DV. Diagnostic significance of complete blood count in cardiovascular patients; Samara State Medical University. Russian J Cardiol. 2020;25(12):3923. doi:10.15829/1560-4071-2020-3923
  • Thygesen K, Alpert JS, Jaffe AS, Simoons ML, Chaitman BR, White HD. Third universal definition of myocardial infarction. J Am Coll Cardiol. 2012;60(16):1581–1598. Epub 2012 Sep 5. PMID: 22958960. doi:10.1016/j.jacc.2012.08.001
  • Thygesen K, Alpert JS, Jaffe AS, et al.; Executive Group on behalf of the Joint European Society of Cardiology (ESC)/American College of Cardiology (ACC)/American Heart Association (AHA)/World Heart Federation (WHF) Task Force for the Universal Definition of Myocardial Infarction. Fourth Universal Definition of Myocardial Infarction (2018). Circulation. 2018;138(20):e618–e651. PMID: 30571511. doi:10.1161/CIR.0000000000000617
  • Eckner D, Pauschinger M, Ademaj F, Martinovic K. Universellen Definition des Myokardinfarkts [Clinical implications of the fourth universal definition of myocardial infarction]. Herz. 2020. 45(6):520–527. German. PMID: 32514585. doi:10.1007/s00059-020-04948-6
  • Takeda S. Crystal structure of troponin and the molecular mechanism of muscle regulation. J Electron Microsc. 2005;54 Suppl 1:i35–41. PMID: 16157639. doi:10.1093/jmicro/54.suppl_1.i35
  • Katrukha IA. Human cardiac troponin complex. Structure and functions. Biochemistry (Mosc). 2013;78(13):1447–1465. PMID: 24490734. doi:10.1134/S0006297913130063
  • Henderson CA, Gomez CG, Novak SM, Mi-Mi L, Gregorio CC. Overview of the Muscle Cytoskeleton. Compr Physiol. 2017;7(3):891–944. PMID: 28640448; PMCID: PMC5890934. doi:10.1002/cphy.c160033
  • Chaulin A. Clinical and diagnostic value of highly sensitive cardiac troponins in arterial hypertension. Vasc Health Risk Manag. 2021;17:431–443. PMID: 34366667; PMCID: PMC8336985. doi:10.2147/VHRM.S315376
  • Wei B, Jin JP. Troponin T isoforms and posttranscriptional modifications: evolution, regulation and function. Arch Biochem Biophys. 2011;505(2):144–154. Epub 2010 Oct 18. PMID: 20965144; PMCID: PMC3018564. doi:10.1016/j.abb.2010.10.013
  • Jin JP. Evolution, Regulation, and Function of N-terminal Variable Region of Troponin T: modulation of Muscle Contractility and Beyond. Int Rev Cell Mol Biol. 2016;321:1–28. Epub 2015 Nov 4. PMID: 26811285. doi:10.1016/bs.ircmb.2015.09.002
  • Chaulin A. Cardiac troponins: contemporary biological data and new methods of determination. Vasc Health Risk Manag. 2021;17:299–316. PMID: 34113117; PMCID: PMC8184290. doi:10.2147/VHRM.S300002
  • Wang XY, Zhang F, Zhang C, Zheng LR, Yang J. The biomarkers for acute myocardial infarction and heart failure. Biomed Res Int. 2020;2020:2018035. PMID: 32016113; PMCID: PMC6988690. doi:10.1155/2020/2018035
  • Apple FS, Sandoval Y, Jaffe AS, Ordonez-Llanos J, Task IFCC. Force on Clinical applications of cardiac bio-markers. cardiac troponin assays: guide to understanding analytical characteristics and their impact on clinical care. Clin Chem. 2017;63(1):73–81. Epub 2016 Oct 10. PMID: 28062612. doi:10.1373/clinchem.2016.255109
  • Aakre KM, Saeed N, Wu AHB, Kavsak PA. Analytical performance of cardiac troponin assays - Current status and future needs. Clin Chim Acta. 2020;509:149–155. Epub 2020 Jun 12. PMID: 32540128. doi:10.1016/j.cca.2020.06.021
  • Chaulin AM, Duplyakov DV. MicroRNAs in atrial fibrillation: pathophysiological aspects and potential biomarkers. Int J Biomed. 2020;10:198–205. doi:10.21103/Article10(3)_RA3
  • Chaulin AM, Abashina OE, Duplyakov DV. Pathophysiological mechanisms of cardiotoxicity in chemotherapeutic agents. Russ Open Med J. 2020;9:e0305. doi:10.15275/rusomj.2020.0305
  • Chuang AM, Nguyen MT, Kung WM, Lehman S, Chew DP. High-sensitivity troponin in chronic kidney disease: considerations in myocardial infarction and beyond. Rev Cardiovasc Med. 2020;21(2):191–203. PMID: 32706208. doi:10.31083/j.rcm.2020.02.17
  • Chaulin AM, Duplyakov DV. Arrhythmogenic effects of doxorubicin. Complex Issues Cardiovasc Dis. 2020;9:69–80. doi:10.17802/2306-1278-2020-9-3-69-80
  • Chaulin AM, Duplyakov DV. Increased natriuretic peptides not associated with heart failure. Russ J Cardiol. 2020;25:4140. doi:10.15829/1560-4071-2020-4140
  • Stavroulakis GA, George KP. Exercise-induced release of troponin. Clin Cardiol. 2020;43(8):872–881. Epub 2020. PMID: 31975465; PMCID: PMC7403670. doi:10.1002/clc.23337
  • Chauin A. The Main Causes and Mechanisms of Increase in Cardiac Troponin Concentrations Other Than Acute Myocardial Infarction (Part 1): physical Exertion, Inflammatory Heart Disease, Pulmonary Embolism, Renal Failure, Sepsis. Vasc Health Risk Manag. 2021;17:601–617. PMID: 34584417; PMCID: PMC8464585. doi:10.2147/VHRM.S327661
  • Lindner G, Pfortmueller CA, Braun CT, Exadaktylos AK. Non-acute myocardial infarction-related causes of elevated high-sensitive troponin T in the emergency room: a cross-sectional analysis. Intern Emerg Med. 2014;9(3):335–339. Epub 2013 Dec 11. PMID: 24326466. doi:10.1007/s11739-013-1030-y
  • Wu W, Li DX, Wang Q, Xu Y, Cui YJ. Relationship between high-sensitivity cardiac troponin T and the prognosis of elderly inpatients with non-acute coronary syndromes. Clin Interv Aging. 2018;13:1091–1098. PMID: 29922047; PMCID: PMC5995414. doi:10.2147/CIA.S157048
  • Askin L, Tanriverdi O, Turkmen S. Clinical importance of high- sensitivity troponin T in patients without coronary artery disease. North Clin Istanb. 2020;7(3):305–310. PMID: 32478307; PMCID: PMC7251271. doi:10.14744/nci.2019.71135
  • Qin ZJ, Wu QY, Deng Y, et al. Association Between High-Sensitivity Troponin T on Admission and Organ Dysfunction During Hospitalization in Patients Aged 80 Years and Older with Hip Fracture: a Single-Centered Prospective Cohort Study. Clin Interv Aging. 2021;16:583–591. PMID: 33854308; PMCID: PMC8039433. doi:10.2147/CIA.S303246
  • Collet JP, Thiele H, Barbato E; ESC Scientific Document Group. 2020 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur Heart J. 2021;42(14):1289–1367. PMID: 32860058. doi:10.1093/eurheartj/ehaa575.
  • Odsæter IH, Grenne B, Hov GG, Laugsand LE, Wiseth R, Mikkelsen G. Establishing the 99th percentile of a novel assay for high-sensitivity troponin I in a healthy blood donor population. Clin Chem Lab Med. 2020;58(9):1557–1563. PMID: 32286238. doi:10.1515/cclm-2019-1023
  • Bahadur K, Ijaz A, Salahuddin M, Alam A. Determination of high sensitive cardiac troponin I 99th percentile upper reference limits in a healthy Pakistani population. Pak J Med Sci. 2020;36(6):1303–1307. PMID: 32968398; PMCID: PMC7501037. doi:10.12669/pjms.36.6.2328
  • Koerbin G, Tate J, Potter JM, Cavanaugh J, Glasgow N, Hickman PE. Characterisation of a highly sensitive troponin I assay and its application to a cardio-healthy population. Clin Chem Lab Med. 2012;50(5):871–878. PMID: 22628331. doi:10.1515/cclm-2011-0540
  • Abe N, Tomita K, Teshima M, et al. Distribution of cardiac troponin I in the Japanese general population and factors influencing its concentrations. J Clin Lab Anal. 2018;32(3):e22294. Epub 2017 Aug 1. PMID: 28763113; PMCID: PMC5888119. doi:10.1002/jcla.22294
  • Chen JY, Lee SY, Li YH, Lin CY, Shieh MD, Ciou DS. Urine high-sensitivity troponin I predict incident cardiovascular events in patients with diabetes mellitus. J Clin Med. 2020;9(12):3917. PMID: 33276667; PMCID: PMC7761585. doi:10.3390/jcm9123917
  • Chaulin AM, Karslyan LS, Bazyuk EV, Nurbaltaeva DA, Duplyakov DV. [Clinical and diagnostic value of cardiac markers in human biological fluids]. Kardiologiia. 2019. 59(11):66–75. Russian. PMID: 31849301. doi:10.18087/cardio.2019.11.n414
  • Chaulin AM, Duplyakova PD, Bikbaeva GR, Tukhbatova AA, Grigorieva EV, Duplyakov DV. Concentration of high-sensitivity cardiac troponin I in the oral fluid in patients with acute myocardial infarction: a pilot study. Russian J Cardiol. 2020;25(12):3814. doi:10.15829/1560-4071-2020-3814
  • Mirzaii-Dizgah I, Riahi E. Salivary high-sensitivity cardiac troponin T levels in patients with acute myocardial infarction. Oral Dis. 2013;19(2):180–184. Epub 2012 Jul 27. PMID: 22834943. doi:10.1111/j.1601-0825.2012.01968.x
  • Garcia-Osuna A, Gaze D, Grau-Agramunt M, et al. Ultrasensitive quantification of cardiac troponin I by a Single Molecule Counting method: analytical validation and biological features. Clin Chim Acta. 2018;486:224–231. Epub 2018 Aug 12. PMID: 30110608. doi:10.1016/j.cca.2018.08.015
  • Giannitsis E, Mueller-Hennessen M, Zeller T, et al. Gender-specific reference values for high-sensitivity cardiac troponin T and I in well-phenotyped healthy individuals and validity of high-sensitivity assay designation. Clin Biochem. 2020;78:18–24. Epub 2019 Nov 28. PMID: 31786204. doi:10.1016/j.clinbiochem.2019.11.013
  • Rocco E, La Rosa G, Liuzzo G, Biasucci LM. High-sensitivity cardiac troponin assays and acute coronary syndrome: a matter of sex? J Cardiovasc Med. 2019;20(8):504–509. PMID: 31259857. doi:10.2459/JCM.0000000000000811
  • Romiti GF, Cangemi R, Toriello F, et al. Sex-specific cut-offs for high-sensitivity cardiac troponin: is less more? Cardiovasc Ther. 2019;2019:9546931. PMID: 31772621; PMCID: PMC6739766. doi:10.1155/2019/9546931
  • Monneret D, Gellerstedt M, Bonnefont-Rousselot D. Determination of age- and sex-specific 99th percentiles for high-sensitive troponin T from patients: an analytical imprecision- and partitioning-based approach. Clin Chem Lab Med. 2018;56(5):818–829. PMID: 29176015. doi:10.1515/cclm-2017-0256
  • Bohn MK, Higgins V, Kavsak P, Hoffman B, Adeli K. High-sensitivity generation 5 cardiac troponin t sex- and age-specific 99th percentiles in the caliper cohort of healthy children and adolescents. Clin Chem. 2019;65(4):589–591. Epub 2019. PMID: 30737206. doi:10.1373/clinchem.2018.299156
  • Boeddinghaus J, Nestelberger T, Twerenbold R, et al.; TRAPID-AMI Investigators. Impact of age on the performance of the ESC 0/1h-algorithms for early diagnosis of myocardial infarction. Eur Heart J. 2018;39(42):3780–3794. PMID: 30169752. doi:10.1093/eurheartj/ehy514
  • Gore MO, Seliger SL, Defilippi CR, et al. Age- and sex-dependent upper reference limits for the high-sensitivity cardiac troponin T assay. J Am Coll Cardiol. 2014;63(14):1441–1448. Epub 2014 Feb 12. PMID: 24530665; PMCID: PMC3984900. doi:10.1016/j.jacc.2013.12.032
  • Fournier S, Iten L, Marques-Vidal P, et al. Circadian rhythm of blood cardiac troponin T concentration. Clin Res Cardiol. 2017;106(12):1026–1032. Epub 2017 Aug 30. PMID: 28856443. doi:10.1007/s00392-017-1152-8
  • Klinkenberg LJ, van Dijk JW, Tan FE, van Loon LJ, van Dieijen-visser MP, Meex SJ. Circulating cardiac troponin T exhibits a diurnal rhythm. J Am Coll Cardiol. 2014;63(17):1788–1795. Epub 2014 Feb 26. PMID: 24583293. doi:10.1016/j.jacc.2014.01.040
  • Chaulin AM, Duplyakov DV. High-sensitivity cardiac troponins: circadian rhythms. Cardiovasc Therapy Prevent. 2021;20(1):2639. doi:10.15829/1728-8800-2021-2639
  • Chaulin AM, Abashina OE, Duplyakov DV. High-sensitivity cardiac troponins: detection and central analytical characteristics. Cardiovascular Therapy and Prevention. J Chem Med. 2021;20(2):2590. doi:10.15829/1728-8800-2021-2590
  • Eggers KM, Lindahl B. Impact of Sex on Cardiac Troponin Concentrations-A Critical Appraisal. Clin Chem. 2017;63(9):1457–1464. Epub 2017 Jun 19. PMID: 28630238. doi:10.1373/clinchem.2017.271684
  • Sedighi SM, Prud’Homme P, Ghachem A, et al. Increased level of high-sensitivity cardiac Troponin T in a geriatric population is determined by comorbidities compared to age. Int J Cardiol Heart Vasc. 2019;22:187–191. PMID: 30963093; PMCID: PMC6437284. doi:10.1016/j.ijcha.2019.02.015
  • Hickman PE, Abhayaratna WP, Potter JM, Koerbin G. Age-related differences in hs-cTnI concentration in healthy adults. Clin Biochem. 2019;69:26–29. Epub 2019 Apr 25. PMID: 31028731. doi:10.1016/j.clinbiochem.2019.04.014
  • Chaulin AM, Duplyakova PD, Duplyakov DV. Circadian rhythms of cardiac troponins: mechanisms and clinical significance. Russian J Cardiol. 2020;25(3S):4061. doi:10.15829/1560-4071-2020-4061
  • Chaulin AM, Duplyakov DV. On the potential effect of circadian rhythms of cardiac troponins on the diagnosis of acute myocardial infarction. Signa Vitae. 2021;17:79–84. doi:10.22514/sv.2021.050
  • Vogiatzis I. Circadian rhythm of cardiac troponins. Does it really exist? Int J Cardiol. 2018;270:72–73. Epub 2018 Jul 7. PMID: 30017523. doi:10.1016/j.ijcard.2018.07.035
  • Zaninotto M, Padoan A, Mion MM, Marinova M, Plebani M. Short-term biological variation and diurnal rhythm of cardiac troponin I (Access hs-TnI) in healthy subjects. Clin Chim Acta. 2020;504:163–167. Epub 2020 Feb 5. PMID: 32035091. doi:10.1016/j.cca.2020.02.004
  • Wildi K, Singeisen H, Twerenbold R, et al.; APACE Investigators. Circadian rhythm of cardiac troponin I and its clinical impact on the diagnostic accuracy for acute myocardial infarction. Int J Cardiol. 2018;270:14–20. Epub 2018 Jun 4. PMID: 29891238. doi:10.1016/j.ijcard.2018.05.136
  • Tate JR, Bunk DM, Christenson RH, et al.; Group on Standardization of Troponin I. Standardisation of cardiac troponin I measurement: past and present. Pathology. 2010;42(5):402–408. PMID: 20632814. doi:10.3109/00313025.2010.495246
  • Panteghini M, Bunk DM, Christenson RH, et al.; Group on Standardization of Troponin I. Standardization of troponin I measurements: an update. Clin Chem Lab Med. 2008;46(11):1501–1506. PMID: 18778218. doi:10.1515/CCLM.2008.291
  • Jarolim P. High sensitivity cardiac troponin assays in the clinical laboratories. Clin Chem Lab Med. 2015;53(5):635–652. PMID: 25252753. doi:10.1515/cclm-2014-0565
  • Katrukha IA, Kogan AE, Vylegzhanina AV, et al. Full-size cardiac troponin I and its proteolytic fragments in blood of patients with acute myocardial infarction: antibody selection for assay development. Clin Chem. 2018;64(7):1104–1112. Epub 2018 Apr 9. PMID: 29632125. doi:10.1373/clinchem.2017.286211
  • Streng AS, de Boer D, van der Velden J, van Dieijen-visser MP, Wodzig WK. Posttranslational modifications of cardiac troponin T: an overview. J Mol Cell Cardiol. 2013;63:47–56. Epub 2013 Jul 18. PMID: 23871791. doi:10.1016/j.yjmcc.2013.07.004
  • Mirzaii-Dizgah I, Riahi E. Salivary troponin I as an indicator of myocardial infarction. Indian J Med Res. 2013;138(6):861–865. PMID: 24521627; PMCID: PMC3978973.
  • Bahbah EI, Noehammer C, Pulverer W, Jung M, Weinhaeusel A. Salivary biomarkers in cardiovascular disease: an insight into the current evidence. FEBS J. 2021;288(22):6392–6405. Epub 2021. PMID: 33370493. doi:10.1111/febs.15689
  • Abdul Rehman S, Khurshid Z, Hussain Niazi F, et al. Role of salivary biomarkers in detection of cardiovascular diseases (CVD). Proteomes. 2017;5(3):21. PMID: 28783097; PMCID: PMC5620538. doi:10.3390/proteomes5030021
  • Klichowska-Palonka M, Załęska-Chromińska K, Bachanek T. [Possibility of using saliva as a diagnostic test material in cardiovascular diseases]. Wiad Lek. 2015;68(3 pt 2):354–357. Polish. PMID: 28501835.
  • Pervan P, Svaguša T, Prkačin I, Savuk A, Bakos M, Perkov S. Urine high sensitive Troponin I measuring in patients with hypertension. Signa Vitae. 2017;13:62–64. doi:10.22514/SV133.062017.13
  • Mishra V, Patil R, Khanna V, et al. Evaluation of salivary cardiac troponin-I as potential marker for detection of acute myocardial infarction. J Clin Diagn Res. 2018;12:44–47. doi:10.7860/JCDR/2018/32109.11791
  • Chaulin AM. Phosphorylation and fragmentation of the cardiac troponin T: mechanisms, role in pathophysiology and laboratory diagnosis. Int J Biomed. 2021;11:250–259. doi:10.21103/Article11(3)_RA2
  • Ziebig R, Lun A, Hocher B, et al. Renal elimination of troponin T and troponin I. Clin Chem. 2003;49(7):1191–1193. PMID: 12816921. doi:10.1373/49.7.1191
  • Ellis K, Dreisbach AW, Lertora JL. Plasma elimination of cardiac troponin I in end-stage renal disease. South Med J. 2001;94(10):993–996. PMID: 11702827. doi:10.1097/00007611-200194100-00011
  • Zhu BL, Ishikawa T, Michiue T, et al. Postmortem cardiac troponin I and creatine kinase MB levels in the blood and pericardial fluid as markers of myocardial damage in medicolegal autopsy. Leg Med. 2007;9(5):241–250. doi:10.1016/j.legalmed.2007.01.010
  • González-Herrera L, Valenzuela A, Ramos V, Blázquez A, Villanueva E. Cardiac troponin T determination by a highly sensitive assay in postmortem serum and pericardial fluid. Forensic Sci Med Pathol. 2016;12(2):181–188. doi:10.1007/s12024-016-9749-1
  • Maeda H, Michiue T, Zhu BL, Ishikawa T, Quan L. Analysis of cardiac troponins and creatine kinase MB in cerebrospinal fluid in medicolegal autopsy cases. Leg Med. 2009;11(Suppl 1):S266–8. doi:10.1016/j.legalmed.2009.01.005
  • Wang Q, Michiue T, Ishikawa T, Zhu BL, Maeda H. Combined analyses of creatine kinase MB, cardiac troponin I and myoglobin in pericardial and cerebrospinal fluids to investigate myocardial and skeletal muscle injury in medicolegal autopsy cases. Leg Med. 2011;13(5):226–232. doi:10.1016/j.legalmed.2011.05.002
  • Chen JH, Inamori-Kawamoto O, Michiue T, Ikeda S, Ishikawa T, Maeda H. Cardiac biomarkers in blood, and pericardial and cerebrospinal fluids of forensic autopsy cases: a reassessment with special regard to postmortem interval. Leg Med. 2015;17(5):343–350. doi:10.1016/j.legalmed.2015.03.007
  • Stefanovic V, Loukovaara M. Amniotic fluid cardiac troponin T in pathological pregnancies with evidence of chronic fetal hypoxia. Croat Med J. 2005;46(5):801–807. PMID: 16158475.
  • Yoshida M, Matsuda H, Yoshinaga Y, et al. Analysis about the influence on the fetus infected with parvovirus B19 using amniotic erythropoietin and troponin-T. Arch Gynecol Obstet. 2013;288(3):521–525. doi:10.1007/s00404-013-2815-y
  • Blohm ME, Arndt F, Fröschle GM, et al. Cardiovascular biomarkers in amniotic fluid, umbilical arterial blood, umbilical venous blood, and maternal blood at delivery, and their reference values for full-term, singleton, cesarean deliveries. Front Pediatr. 2019;7:271. doi:10.3389/fped.2019.00271
  • Van Mieghem T, Doné E, Gucciardo L, et al. Amniotic fluid markers of fetal cardiac dysfunction in twin-to-twin transfusion syndrome. Am J Obstet Gynecol. 2010;202(1):48.e1–7. doi:10.1016/j.ajog.2009.08.013
  • Chaulin AM, Duplyakov DV. Cardiac troponins: current data on the diagnostic value and analytical characteristics of new determination methods. Cor Vasa. 2021;63:486–493. doi:10.33678/cor.2021.041
  • Kavsak PA. Should detectable cardiac troponin concentrations in a healthy population be the only criterion for classifying high-sensitivity cardiac troponin assays? Clin Biochem. 2018;56:1–3. Epub 2018 May 24. PMID: 29803619. doi:10.1016/j.clinbiochem.2018.05.015
  • Ji M, Moon HW, Hur M, Yun YM. Determination of high-sensitivity cardiac troponin I 99th percentile upper reference limits in a healthy Korean population. Clin Biochem. 2016;49(10–11):756–761. Epub 2016 Apr 9. PMID: 27067595. doi:10.1016/j.clinbiochem.2016.01.027
  • Tjora S, Hall TS, Larstorp AC, Hallen J, Atar D. Increases in circulating cardiac troponin are not always associated with myocardial cell death. Clin Lab. 2018;64(11). PMID: 30549980. doi:10.7754/Clin.Lab.2018.180615
  • Jaffe AS, Wu AH. Troponin release–reversible or irreversible injury? Should we care? Clin Chem. 2012;58(1):148–150. Epub 2011 Oct 28. doi:10.1373/clinchem.2011.173070
  • Mair J, Lindahl B, Hammarsten O, et al. How is cardiac troponin released from injured myocardium? Eur Heart J Acute Cardiovasc Care. 2018;7(6):553–560. Epub 2017 Dec 27. PMID: 29278915. doi:10.1177/2048872617748553
  • Hammarsten O, Mair J, Möckel M, Lindahl B, Jaffe AS. Possible mechanisms behind cardiac troponin elevations. Biomarkers. 2018; (8):725–734. Epub 2018 Aug 23. PMID: 29976112. doi:10.1080/1354750X.2018.1490969
  • Gumprecht J, Domek M, Lip GYH, Shantsila A. Invited review: hypertension and atrial fibrillation: epidemiology, pathophysiology, and implications for management. J Hum Hypertens. 2019;33(12):824–836. Epub 2019 Nov 5. PMID: 31690818. doi:10.1038/s41371-019-0279-7
  • Liao XD, Wang XH, Jin HJ, Chen LY, Chen Q. Mechanical stretch induces mitochondria-dependent apoptosis in neonatal rat cardiomyocytes and G2/M accumulation in cardiac fibroblasts. Cell Res. 2004;14(1):16–26. PMID: 15040886. doi:10.1038/sj.cr.7290198
  • Cheng WP, Wang BW, Lo HM, Shyu KG. Mechanical Stretch Induces Apoptosis Regulator TRB3 in. Cardiomyocytes C, Heart V-O. PLoS One. 2015;10(4):e0123235. PMID: 25898323; PMCID: PMC4405267. doi:10.1371/journal.pone.0123235
  • Jiang S, Huo D, Wang X, et al. β-adrenergic Receptor-stimulated Cardiac Myocyte Apoptosis: role of Cytochrome P450 ω-hydroxylase. J Cardiovasc Pharmacol. 2017;70(2):94–101. PMID: 28768289. doi:10.1097/FJC.0000000000000499
  • Communal C, Colucci WS. The control of cardiomyocyte apoptosis via the beta-adrenergic signaling pathways. Arch Mal Coeur Vaiss. 2005;98(3):236–241. PMID: 15816327.
  • Dalal S, Foster CR, Das BC, Singh M, Singh K. Β-adrenergic receptor stimulation induces endoplasmic reticulum stress in adult cardiac myocytes: role in apoptosis. Mol Cell Biochem. 2012;364(1–2):59–70. Epub 2012. PMID: 22270541; PMCID: PMC3320150. doi:10.1007/s11010-011-1205-7
  • Chen QM, Tu VC. Apoptosis and heart failure: mechanisms and therapeutic implications. Am J Cardiovasc Drugs. 2002;2(1):43–57. PMID: 14727998. doi:10.2165/00129784-200202010-00006
  • Kunapuli S, Rosanio S, Schwarz ER. “How do cardiomyocytes die?” apoptosis and autophagic cell death in cardiac myocytes. J Card Fail. 2006;12(5):381–391. PMID: 16762802. doi:10.1016/j.cardfail.2006.02.002
  • Ricchiuti V, Apple FS. RNA expression of cardiac troponin T isoforms in diseased human skeletal muscle. Clin Chem. 1999;45(12):2129–2135. PMID: 10585344. doi:10.1093/clinchem/45.12.2129
  • Ricchiuti V, Voss EM, Ney A, Odland M, Anderson PA, Apple FS. Cardiac troponin T isoforms expressed in renal diseased skeletal muscle will not cause false-positive results by the second generation cardiac troponin T assay by Boehringer Mannheim. Clin Chem. 1998;44(9):1919–1924. PMID: 9732977. doi:10.1093/clinchem/44.9.1919
  • Bergmann O, Bhardwaj RD, Bernard S, et al. Evidence for cardiomyocyte renewal in humans. Science. 2009;324(5923):98–102. PMID: 19342590; PMCID: PMC2991140. doi:10.1126/science.1164680
  • Bergmann O, Zdunek S, Frisén J, Bernard S, Druid H, Jovinge S. Cardiomyocyte renewal in humans. Circ Res. 2012;110(1):e17. PMID: 22223215. doi:10.1161/CIRCRESAHA.111.259598
  • White HD. Pathobiology of troponin elevations: do elevations occur with myocardial ischemia as well as necrosis? J Am Coll Cardiol. 2011;57(24):2406–2408. PMID: 21658560. doi:10.1016/j.jacc.2011.01.029
  • Nakada Y, Canseco DC, Thet S, et al. Hypoxia induces heart regeneration in adult mice. Nature. 2017;541(7636):222–227. Epub 2016 Oct 31. PMID: 27798600. doi:10.1038/nature20173
  • Lázár E, Sadek HA, Bergmann O. Cardiomyocyte renewal in the human heart: insights from the fall-out. Eur Heart J. 2017;38(30):2333–2342. PMID: 28810672; PMCID: PMC5837331. doi:10.1093/eurheartj/ehx343
  • Foglia MJ, Poss KD. Building and re-building the heart by cardiomyocyte proliferation. Development. 2016;143(5):729–740. PMID: 26932668; PMCID: PMC4813344. doi:10.1242/dev.132910
  • Docshin PM, Karpov AA, Eyvazova SD, et al. Activation of Cardiac Stem Cells in Myocardial Infarction. Cell Tissue Biol. 2018;12:175–182. doi:10.1134/S1990519X18030045
  • Waring CD, Vicinanza C, Papalamprou A, et al. The adult heart responds to increased workload with physiologic hypertrophy, cardiac stem cell activation, and new myocyte formation. Eur Heart J. 2014;35(39):2722–2731. Epub 2012 Oct 25. PMID: 23100284; PMCID: PMC4196078. doi:10.1093/eurheartj/ehs338
  • Rovira M, Borràs DM, Marques IJ, Puig C, Planas JV. Physiological responses to swimming-induced exercise in the adult zebrafish regenerating heart. Front Physiol. 2018;9:1362. PMID: 30327615; PMCID: PMC6174316. doi:10.3389/fphys.2018.01362
  • Schüttler D, Clauss S, Weckbach LT, Brunner S. Molecular mechanisms of cardiac remodeling and regeneration in physical exercise. Cells. 2019;8(10):1128. PMID: 31547508; PMCID: PMC6829258. doi:10.3390/cells8101128
  • Talman V, Ruskoaho H. Cardiac fibrosis in myocardial infarction-from repair and remodeling to regeneration. Cell Tissue Res. 2016;365(3):563–581. Epub 2016 Jun 21. PMID: 27324127; PMCID: PMC5010608. doi:10.1007/s00441-016-2431-9
  • Isomi M, Sadahiro T, Ieda M. Progress and Challenge of Cardiac Regeneration to Treat Heart Failure. J Cardiol. 2019;73(2):97–101. Epub 2018 Nov 9. PMID: 30420106. doi:10.1016/j.jjcc.2018.10.002
  • Zhang J, Liu D, Zhang M, Zhang Y. Programmed necrosis in cardiomyocytes: mitochondria, death receptors and beyond. Br J Pharmacol. 2019;176(22):4319–4339. Epub 2018 Jun 25. PMID: 29774530; PMCID: PMC6887687. doi:10.1111/bph.14363
  • Lee Y, Gustafsson AB. Role of apoptosis in cardiovascular disease. Apoptosis. 2009;14(4):536–548. PMID: 19142731. doi:10.1007/s10495-008-0302-x
  • Kyrylkova K, Kyryachenko S, Leid M, Kioussi C. Detection of apoptosis by TUNEL assay. Methods Mol Biol. 2012;887:41. PMID: 22566045. doi:10.1007/978-1-61779-860-3_5
  • Zorc-Pleskovic R, Alibegović A, Zorc M, Milutinović A, Radovanović N, Petrović D. Apoptosis of cardiomyocytes in myocarditis. Folia Biol. 2006;52(1–2):6–9. PMID: 17007104.
  • Zhang Q, Yu N, Yu BT. MicroRNA-298 regulates apoptosis of cardiomyocytes after myocardial infarction. Eur Rev Med Pharmacol Sci. 2018;22(2):532–539. PMID: 29424914. doi:10.26355/eurrev_201801_14206
  • Weil BR, Young RF, Shen X, et al. Brief myocardial ischemia produces cardiac troponin I release and focal myocyte apoptosis in the absence of pathological infarction in swine. JACC Basic Transl Sci. 2017;2(2):105–114. Epub 2017 Mar 29. PMID: 28979949; PMCID: PMC5624553. doi:10.1016/j.jacbts.2017.01.006
  • Cheng W, Li B, Kajstura J, et al. Stretch-induced programmed myocyte cell death. J Clin Invest. 1995;96(5):2247–2259. PMID: 7593611; PMCID: PMC185875. doi:10.1172/JCI118280
  • Gherasim L. Troponins in heart failure - a perpetual challenge. Maedica. 2019;14(4):371–377. PMID: 32153668; PMCID: PMC7035435. doi:10.26574/maedica.2019.14.4.371
  • Aengevaeren VL, Baggish AL, Chung EH, et al. Exercise-Induced Cardiac Troponin Elevations: from Underlying Mechanisms to Clinical Relevance. Circulation. 2021;144(24):1955–1972. Epub 2021 Dec 13. PMID: 34898243; PMCID: PMC8663527. doi:10.1161/CIRCULATIONAHA.121.056208
  • Park KC, Gaze DC, Collinson PO, Marber MS. Cardiac troponins: from myocardial infarction to chronic disease. Cardiovasc Res. 2017;113(14):1708–1718. PMID: 29016754; PMCID: PMC5852618. doi:10.1093/cvr/cvx183
  • Weil BR, Suzuki G, Young RF, Iyer V, Canty JM. Troponin release and reversible left ventricular dysfunction after transient pressure overload. J Am Coll Cardiol. 2018;71(25):2906–2916. PMID: 29929614; PMCID: PMC6020832. doi:10.1016/j.jacc.2018.04.029
  • Felker GM, Fudim M. Unraveling the mystery of troponin elevation in heart failure. J Am Coll Cardiol. 2018;71(25):2917–2918. PMID: 29929615. doi:10.1016/j.jacc.2018.03.537
  • Sanchez O, Planquette B, Wermert D, Marié E, Meyer G. Embolies pulmonaires graves [Massive pulmonary embolism]. Presse Med. 2008. 37(10):1439–1446. French. Epub 2008 Sep 4. PMID: 18775637. doi:10.1016/j.lpm.2008.07.003
  • El-Menyar A, Sathian B, Al-Thani H. Elevated serum cardiac troponin and mortality in acute pulmonary embolism: systematic review and meta-analysis. Respir Med. 2019;157:26–35. Epub 2019 Aug 23. PMID: 31476570. doi:10.1016/j.rmed.2019.08.011
  • Daquarti G, March Vecchio N, Mitrione CS, et al. High-sensitivity troponin and right ventricular function in acute pulmonary embolism. Am J Emerg Med. 2016;34(8):1579–1582. Epub 2016 May 29. PMID: 27306263. doi:10.1016/j.ajem.2016.05.071
  • Singh K, Communal C, Sawyer DB, Colucci WS. Adrenergic regulation of myocardial apoptosis. Cardiovasc Res. 2000;45(3):713–719. PMID: 10728393. doi:10.1016/s0008-6363(99)00370-3
  • Colucci WS, Sawyer DB, Singh K, Communal C. Adrenergic overload and apoptosis in heart failure: implications for therapy. J Card Fail. 2000;6(2 Suppl 1):1–7. PMID: 10908092.
  • Xiao RP, Tomhave ED, Wang DJ, et al. Age-associated reductions in cardiac beta1- and beta2-adrenergic responses without changes in inhibitory G proteins or receptor kinases. J Clin Invest. 1998;101(6):1273–1282. PMID: 9502768; PMCID: PMC508681. doi:10.1172/JCI1335
  • Mougenot N, Mika D, Czibik G, et al. Cardiac adenylyl cyclase overexpression precipitates and aggravates age-related myocardial dysfunction. Cardiovasc Res. 2019;115(12):1778–1790. PMID: 30605506; PMCID: PMC6755357. doi:10.1093/cvr/cvy306
  • de Lucia C, Eguchi A, Koch WJ. New Insights in Cardiac β-Adrenergic Signaling During Heart Failure and Aging. Front Pharmacol. 2018;9:904. PMID: 30147654; PMCID: PMC6095970. doi:10.3389/fphar.2018.00904
  • Schwartz P, Piper HM, Spahr R, Spieckermann PG. Ultrastructure of cultured adult myocardial cells during anoxia and reoxygenation. Am J Pathol. 1984;115(3):349–361. PMID: 6731585; PMCID: PMC1900509.
  • Siegmund B, Koop A, Klietz T, Schwartz P, Piper HM. Sarcolemmal integrity and metabolic competence of cardiomyocytes under anoxia-reoxygenation. Am J Physiol. 1990;258(2 Pt 2):H285–91. PMID: 2309898. doi:10.1152/ajpheart.1990.258.2.H285
  • Piper HM, Schwartz P, Spahr R, Hütter JF, Spieckermann PG. Absence of reoxygenation damage in isolated heart cells after anoxic injury. Pflugers Arch. 1984;401(1):71–76. PMID: 6473067. doi:10.1007/BF00581535
  • Chaulin AM. Updated information about methods of identification and diagnostic opportunities of cardiac troponins. Medicina di Lab. 2016;17(3):154–164. doi:10.23736/S1825-859X.21.00116-X
  • Aakre KM, Omland T. Physical activity, exercise and cardiac troponins: clinical implications. Prog Cardiovasc Dis. 2019;62(2):108–115. Epub 2019 Feb 22. PMID: 30797799. doi:10.1016/j.pcad.2019.02.005
  • Sheyin O, Davies O, Duan W, Perez X. The prognostic significance of troponin elevation in patients with sepsis: a meta-analysis. Heart Lung. 2015;44(1):75–81. Epub 2014 Nov 18. PMID: 25453390. doi:10.1016/j.hrtlng.2014.10.002
  • Gibler WB, Gibler CD, Weinshenker E, et al. Myoglobin as an early indicator of acute myocardial infarction. Ann Emerg Med. 1987;16(8):851–856. PMID: 3619163. doi:10.1016/s0196-0644(87)80521-8
  • Bhayana V, Henderson AR. Biochemical markers of myocardial damage. Clin Biochem. 1995;28(1):1–29. PMID: 7720223. doi:10.1016/0009-9120(94)00065-4
  • Chen Y, Tao Y, Zhang L, Xu W, Zhou X. Diagnostic and prognostic value of biomarkers in acute myocardial infarction. Postgrad Med J. 2019;95(1122):210–216. Epub 2019 Apr 4. PMID: 30948439. doi:10.1136/postgradmedj-2019-136409
  • McDonough JL, Arrell DK, Van Eyk JE. Troponin I degradation and covalent complex formation accompanies myocardial ischemia/reperfusion injury. Circ Res. 1999;84(1):9–20. PMID: 9915770. doi:10.1161/01.res.84.1.9
  • Feng J, Schaus BJ, Fallavollita JA, Lee TC, Canty JM Jr. Preload induces troponin I degradation independently of myocardial ischemia. Circulation. 2001;103(16):2035–2037. PMID: 11319190. doi:10.1161/01.cir.103.16.2035
  • Gao CQ, Sawicki G, Suarez-Pinzon WL, et al. Matrix metalloproteinase-2 mediates cytokine-induced myocardial contractile dysfunction. Cardiovasc Res. 2003;57(2):426–433. PMID: 12566115. doi:10.1016/s0008-6363(02)00719-8
  • Lin NN, Cheng CC, Lee YF, et al. Early activation of myocardial matrix metalloproteinases and degradation of cardiac troponin I after experimental subarachnoid hemorrhage. J Surg Res. 2013;179(1):e41–8. Epub 2012 Mar 28. PMID: 22475348. doi:10.1016/j.jss.2012.02.008
  • Parente JM, Blascke de Mello MM, Silva PHLD. MMP inhibition attenuates hypertensive eccentric cardiac hypertrophy and dysfunction by preserving troponin I and dystrophin. Biochem Pharmacol. 2021;193:114744. Epub 2021 Aug 25. PMID: 34453903. doi:10.1016/j.bcp.2021.114744
  • Streng AS, de Boer D, van Doorn WP, Kocken JM, Bekers O, Wodzig WK. Cardiac troponin T degradation in serum is catalysed by human thrombin. Biochem Biophys Res Commun. 2016;481(1–2):165–168. Epub 2016 Nov 2. PMID: 27816455. doi:10.1016/j.bbrc.2016.10.149
  • Katrukha IA, Kogan AE, Vylegzhanina AV, et al. Thrombin-Mediated Degradation of Human Cardiac Troponin T. Clin Chem. 2017;63(6):1094–1100. Epub 2017 Apr 20. PMID: 28428352. doi:10.1373/clinchem.2016.266635
  • Bodor GS. Cardiac Troponins: molecules of Many Surprises. Clin Chem. 2017;63(6):1059–1060. Epub 2017 Apr 20. PMID: 28428360. doi:10.1373/clinchem.2017.273094
  • Ito K, Date T, Ikegami M, et al. An immunohistochemical analysis of tissue thrombin expression in the human atria. PLoS One. 2013;8(6):e65817. doi:10.1371/journal.pone.0065817
  • Ito K, Hongo K, Date T, et al. Tissue thrombin is associated with the pathogenesis of dilated cardiomyopathy. Int J Cardiol. 2017;228:821–827. doi:10.1016/j.ijcard.2016.11.176
  • Matsukura U, Okitani A, Nishimuro T, Kato H. Mode of degradation of myofibrillar proteins by an endogenous protease, cathepsin L. Biochim Biophys Acta. 1981;662(1):41–47. PMID: 7306557. doi:10.1016/0005-2744(81)90221-7
  • Peng K, Liu H, Yan B, et al. Inhibition of cathepsin S attenuates myocardial ischemia/reperfusion injury by suppressing inflammation and apoptosis. J Cell Physiol. 2021;236(2):1309–1320. Epub 2020 Jul 13. PMID: 32657442. doi:10.1002/jcp.29938
  • Hickman PE, Potter JM, Aroney C, et al. Cardiac troponin may be released by ischemia alone, without necrosis. Clin Chim Acta. 2010;411(5–6):318–323. Epub 2009 Dec 28. PMID: 20036224. doi:10.1016/j.cca.2009.12.009
  • Hessel MH, Atsma DE, van der Valk EJ, Bax WH, Schalij MJ, van der Laarse A. Release of cardiac troponin I from viable cardiomyocytes is mediated by integrin stimulation. Pflugers Arch. 2008;455(6):979–986. Epub 2007 Oct 2. PMID: 17909848; PMCID: PMC2226063. doi:10.1007/s00424-007-0354-8
  • Ross RS, Borg TK. Integrins and the myocardium. Circ Res. 2001;88(11):1112–1119. PMID: 11397776. doi:10.1161/hh1101.091862
  • Khabbaz KR, Feng J, Boodhwani M, Clements RT, Bianchi C, Sellke FW. Nonischemic myocardial acidosis adversely affects microvascular and myocardial function and triggers apoptosis during cardioplegia. J Thorac Cardiovasc Surg. 2008;135(1):139–146. PMID: 18179930. doi:10.1016/j.jtcvs.2007.07.035
  • Thatte HS, Rhee JH, Zagarins SE, et al. Acidosis-induced apoptosis in human and porcine heart. Ann Thorac Surg. 2004;77(4):1376–1383. PMID: 15063270. doi:10.1016/j.athoracsur.2003.07.047
  • Graham RM, Frazier DP, Thompson JW, et al. A unique pathway of cardiac myocyte death caused by hypoxia-acidosis. J Exp Biol. 2004;207(Pt18):3189. PMID: 15299040. doi:10.1242/jeb.01109
  • Wasfy MM, Hutter AM, Weiner RB. Sudden Cardiac Death in Athletes. Methodist Debakey Cardiovasc J. 2016;12(2):76–80. PMID: 27486488; PMCID: PMC4969030. doi:10.14797/mdcj-12-2-76
  • Aune D, Schlesinger S, Hamer M, Norat T, Riboli E. Physical activity and the risk of sudden cardiac death: a systematic review and meta-analysis of prospective studies. BMC Cardiovasc Disord. 2020;20(1):318. PMID: 32631241; PMCID: PMC7336483. doi:10.1186/s12872-020-01531-z
  • DeFroda SF, McDonald C, Myers C, Cruz AI, Owens BD, Daniels AH. Sudden Cardiac Death in the Adolescent Athlete: history, Diagnosis, and Prevention. Am J Med. 2019;132:1374–1380. Epub 2019 Jun 12. PMID: 31199891. doi:10.1016/j.amjmed.2019.05.025
  • Sollazzo F, Palmieri V, Gervasi SF, et al. Sudden Cardiac Death in Athletes in Italy during 2019: internet-Based Epidemiological Research. Medicina. 2021;57(1):61. PMID: 33445447; PMCID: PMC7827560. doi:10.3390/medicina57010061
  • Klinkenberg LJ, Luyten P, Linden N, et al. Cardiac Troponin T and I Release After a 30-km Run. Am J Cardiol. 2016;118(2):281–287. Epub 2016 May 4. PMID: 27282835. doi:10.1016/j.amjcard.2016.04.030.
  • Martínez-Navarro I, Sánchez-Gómez J, Sanmiguel D, et al. and 24-h post-marathon cardiac troponin T is associated with relative exercise intensity. Eur J Appl Physiol. 2020;120(8):1723–1731. Epub 2020 May 28. PMID: 32468283. doi:10.1007/s00421-020-04403-8
  • Marshall L, Lee KK, Stewart SD, et al. Effect of Exercise Intensity and Duration on Cardiac Troponin Release. Circulation. 2020;141(1):83–85. Epub 2019 Dec 30. PMID: 31887079; PMCID: PMC6940024. doi:10.1161/CIRCULATIONAHA.119.041874
  • O’Hanlon R, Wilson M, Wage R, et al. Troponin release following endurance exercise: is inflammation the cause? a cardiovascular magnetic resonance study. J Cardiovasc Magn Reson. 2010;12(1):38. PMID: 20598139; PMCID: PMC2908607. doi:10.1186/1532-429X-12-38
  • Lazzarino AI, Hamer M, Gaze D, Collinson P, Steptoe A. The association between cortisol response to mental stress and high-sensitivity cardiac troponin T plasma concentration in healthy adults. J Am Coll Cardiol. 2013;62(18):1694–1701. Epub 2013 Jun 27. PMID: 23810896; PMCID: PMC3807660. doi:10.1016/j.jacc.2013.05.070
  • Eggers KM. Mental stress and cardiac troponin: keep calm and carry on? J Am Coll Cardiol. 2013;62(18):1702–1703. Epub 2013 Jun 27. PMID: 23810870. doi:10.1016/j.jacc.2013.06.010
  • Yamaji M, Tsutamoto T, Kawahara C, et al. Serum cortisol as a useful predictor of cardiac events in patients with chronic heart failure: the impact of oxidative stress. Circ Heart Fail. 2009;2(6):608–615. Epub 2009 Sep 28. PMID: 19919986. doi:10.1161/CIRCHEARTFAILURE.109.868513
  • Iwaszczuk P, Łosiak W, Szczeklik W, Musiałek P. Patient periprocedural stress in cardiovascular medicine: friend or foe? Postepy Kardiol Int. 2021;17(3):259–271. Epub 2021 Sep 14. PMID: 34819962; PMCID: PMC8596718. doi:10.5114/aic.2021.109176
  • Bakay M, Zhao P, Chen J, Hoffman EP. A web-accessible complete transcriptome of normal human and DMD muscle. Neuromuscul Disord. 2002;12(Suppl 1):S125–41. doi:10.1016/s0960-8966(02)00093-7
  • Messner B, Baum H, Fischer P, Quasthoff S, Neumeier D. Expression of messenger RNA of the cardiac isoforms of troponin T and I in myopathic skeletal muscle. Am J Clin Pathol. 2000;114(4):544–549. PMID: 11026100. doi:10.1309/8KCL-UQRF-6EEL-36XK
  • Rusakov DY, Yamshcikov NV, Tulayeva ON, Suvorova LA, Metlenko OI. Histogenesis and peculiarities of structural organization of the cardiac muscle tissue in the walls of human caval and pulmonary veins. Morphology. 2015;148(6):38–42.
  • Rusakov DY, Vologdina NN, Tulayeva ON. The development of striated cardiac muscle tissue in the walls of the caval and pulmonary veins. J Anatomy Histopathol. 2015;4(3):105. doi:10.18499/2225-7357-2015-4-3-105-105
  • Bodor GS, Porterfield D, Voss EM, Smith S, Apple FS. Cardiac troponin-I is not expressed in fetal and healthy or diseased adult human skeletal muscle tissue. Clin Chem. 1995;41(12 Pt 1):1710–1715. PMID: 7497610. doi:10.1093/clinchem/41.12.1710
  • Hammerer-Lercher A, Erlacher P, Bittner R, et al. Clinical and experimental results on cardiac troponin expression in Duchenne muscular dystrophy. Clin Chem. 2001;47(3):451–458. PMID: 11238296. doi:10.1093/clinchem/47.3.451
  • Schmid J, Liesinger L, Birner-Gruenberger R, et al. Elevated Cardiac Troponin T in Patients With Skeletal Myopathies. J Am Coll Cardiol. 2018;71(14):1540–1549. PMID: 29622161. doi:10.1016/j.jacc.2018.01.070
  • Anderson PA, Greig A, Mark TM, et al. Molecular basis of human cardiac troponin T isoforms expressed in the developing, adult, and failing heart. Circ Res. 1995;76(4):681–686. doi:10.1161/01.res.76.4.681
  • Bates KJ, Hall EM, Fahie-Wilson MN, et al. Circulating immunoreactive cardiac troponin forms determined by gel filtration chromatography after acute myocardial infarction. Clin Chem. 2010;56(6):952–958. doi:10.1373/clinchem.2009.133546
  • Maekawa A, Lee JK, Nagaya T, et al. Overexpression of calpastatin by gene transfer prevents troponin I degradation and ameliorates contractile dysfunction in rat hearts subjected to ischemia/reperfusion. J Mol Cell Cardiol. 2003;35(10):1277–1284. doi:10.1016/s0022-2828(03)00238-4
  • Zahran S, Figueiredo VP, Graham MM, Schulz R, Hwang PM. Proteolytic Digestion of Serum Cardiac Troponin I as Marker of Ischemic Severity. J Appl Lab Med. 2018;3(3):450–455. doi:10.1373/jalm.2017.025254
  • Vylegzhanina AV, Kogan AE, Katrukha IA, et al. Full-Size and Partially Truncated Cardiac Troponin Complexes in the Blood of Patients with Acute Myocardial Infarction. Clin Chem. 2019;65(7):882–892. doi:10.1373/clinchem.2018.301127
  • Katus HA, Remppis A, Looser S, Hallermeier K, Scheffold T, Kubler W. Enzyme linked immune assay of cardiac troponin T for the detection of acute myocardial infarction in patients. J Mol Cell Cardiol. 1989;21(12):1349–1353. doi:10.1016/0022-2828(89)90680-9
  • Labugger R, Organ L, Collier C, Atar D, Van Eyk JE. Extensive troponin I and T modification detected in serum from patients with acute myocardial infarction. Circulation. 2000;102(11):1221–1226. PMID: 10982534. doi:10.1161/01.cir.102.11.1221
  • Gaze DC, Collinson PO. Multiple molecular forms of circulating cardiac troponin: analytical and clinical significance. Ann Clin Biochem. 2008;45(Pt 4):349–355. doi:10.1258/acb.2007.007229
  • Katrukha AG, Bereznikova AV, Esakova TV, et al. Troponin I is released in bloodstream of patients with acute myocardial infarction not in free form but as complex. Clin Chem. 1997;43(8 Pt 1):1379–1385. PMID: 9267317. doi:10.1093/clinchem/43.8.1379
  • Bodor GS, Oakeley AE, Allen PD, Crimmins DL, Ladenson JH, Anderson PA. Troponin I phosphorylation in the normal and failing adult human heart. Circulation. 1997;96(5):1495–1500. doi:10.1161/01.cir.96.5.1495
  • Hayashi T, Notkins AL. Clearance of LDH-5 from the circulation of inbred mice correlates with binding to macrophages. Int J Exp Pathol. 1994;75(3):165–168. PMID: 8086313.
  • Prabhudas M, Bowdish D, Drickamer K, et al. Standardizing scavenger receptor nomenclature. J Immunol. 2014;192(5):1997–2006. doi:10.4049/jimmunol.1490003
  • De Zoysa JR. Cardiac troponins and renal disease. Nephrology. 2004;9(2):83–88. PMID: 15056267. doi:10.1111/j.1440-1797.2003.00235.x
  • Dubin RF, Li Y, He J, et al.; CRIC Study Investigators. Predictors of high sensitivity cardiac troponin T in chronic kidney disease patients: a cross-sectional study in the chronic renal insufficiency cohort (CRIC). BMC Nephrol. 2013;14:229. PMID: 24148285; PMCID: PMC4016297. doi:10.1186/1471-2369-14-229
  • Di Lullo L, Barbera V, Santoboni A, et al. Malattia renale cronica e sindrome coronarica acuta: il ruolo della troponina [Troponins and chronic kidney disease]. G Ital Nefrol. 2015;32(4):515. Italian. PMID: 26252257.
  • Han X, Zhang S, Chen Z, et al. Cardiac biomarkers of heart failure in chronic kidney disease. Clin Chim Acta. 2020;510:298–310. Epub 2020 Jul 23. PMID: 32710942. doi:10.1016/j.cca.2020.07.040
  • Wilhelm J, Hettwer S, Schuermann M, et al. Elevated troponin in septic patients in the emergency department: frequency, causes, and prognostic implications. Clin Res Cardiol. 2014;103(7):561–567. Epub 2014 Feb 18. PMID: 24535379. doi:10.1007/s00392-014-0684-4
  • Røsjø H, Varpula M, Hagve TA, et al.; FINNSEPSIS Study Group. Circulating high sensitivity troponin T in severe sepsis and septic shock: distribution, associated factors, and relation to outcome. Intensive Care Med. 2011;37(1):77–85. Epub 2010 Oct 12. PMID: 20938765; PMCID: PMC3020309. doi:10.1007/s00134-010-2051-x.
  • Daly M, Long B, Koyfman A, Lentz S. Identifying cardiogenic shock in the emergency department. Am J Emerg Med. 2020;38(11):2425–2433. Epub 2020 Sep 23. PMID: 33039227. doi:10.1016/j.ajem.2020.09.045
  • Muslimovic A, Fridén V, Tenstad O, et al. The Liver and Kidneys mediate clearance of cardiac troponin in the rat. Sci Rep. 2020;10(1):6791. doi:10.1038/s41598-020-63744-8
  • Fridén V, Starnberg K, Muslimovic A, et al. Clearance of cardiac troponin T with and without kidney function. Clin Biochem. 2017;50(9):468–474. doi:10.1016/j.clinbiochem.2017.02.007
  • Kavsak PA, Worster A, Shortt C, et al. Performance of high-sensitivity cardiac troponin in the emergency department for myocardial infarction and a composite cardiac outcome across different estimated glomerular filtration rates. Clin Chim Acta. 2018;479:166–170. Epub 2018 Feb 3. PMID: 29366835. doi:10.1016/j.cca.2018.01.034
  • Patke A, Young MW, Axelrod S. Molecular mechanisms and physiological importance of circadian rhythms. Nat Rev Mol Cell Biol. 2020;21(2):67–84. doi:10.1038/s41580-019-0179-2
  • Cribbet MR, Logan RW, Edwards MD, et al. Circadian rhythms and metabolism: from the brain to the gut and back again. Ann N Y Acad Sci. 2016;1385(1):21–40. doi:10.1111/nyas.13188
  • Thosar SS, Butler MP, Shea SA. Role of the circadian system in cardiovascular disease. J Clin Invest. 2018;128(6):2157–2167. doi:10.1172/JCI80590
  • Klinkenberg LJJ, Wildi K, van der Linden N, et al. Diurnal rhythm of cardiac troponin: consequences for the diagnosis of acute myocardial infarction. Clin Chem. 2016;62(12):1602–1611. doi:10.1373/clinchem.2016.257485
  • van der Linden N, Cornelis T, Klinkenberg LJJ, Kimenai DM, Hilderink JM, Litjens EJR. Strong diurnal rhythm of troponin T, but not troponin I, in a patient with renal dysfunction. Int J Cardiol. 2016;221:287–288. doi:10.1016/j.ijcard.2016.06.268
  • Tofler GH, Brezinski D, Schafer AI, et al. Concurrent morning increase in platelet aggregability and the risk of myocardial infarction and sudden cardiac death. N Engl J Med. 1987;316(24):1514–1518. PMID: 3587281. doi:10.1056/NEJM198706113162405
  • Panza JA, Epstein SE, Quyyumi AA. Circadian variation in vascular tone and its relation to alpha-sympathetic vasoconstrictor activity. N Engl J Med. 1991;325(14):986–990. PMID: 1886635. doi:10.1056/NEJM199110033251402
  • Tsareva YO, Mayskova EA, Fedotov EA, Shvarts YG. [Circadian rhythms of thyroid hormones in patients with ischemic heart disease, arterial hypertension, and atrial fibrillation]. Kardiologiia. 2019. 59(3S):23–29. Russian. PMID: 30990149. doi:10.18087/cardio.2506
  • Chaulin AM, Grigorieva JV, Suvorova GN, Duplyakov DV. Experimental Modeling of Hypothyroidism: Principles, Methods, Several Advanced Research Directions in Cardiology. Russian Open Medical Journal. 2021;10:e0311. doi:10.15275/rusomj.2021.0311
  • Suárez-Barrientos A, López-Romero P, Vivas D, et al. Circadian variations of infarct size in acute myocardial infarction. Heart. 2011;97(12):970–976. Epub 2011 Apr 27. PMID: 21525526. doi:10.1136/hrt.2010.212621
  • Arroyo Úcar E, Dominguez-Rodriguez A, Abreu-Gonzalez P. Influencia de la variabilidad diurna en el tamaño del infarto agudo de miocardio [Influence of diurnal variation in the size of acute myocardial infarction]. Med Intensiva. 2012. 36(1):11–14. Spanish. Epub 2011 Sep 6. PMID: 21899925. doi:10.1016/j.medin.2011.07.002
  • Seneviratna A, Lim GH, Devi A, et al. Circadian Dependence of Infarct Size and Acute Heart Failure in ST Elevation Myocardial Infarction. PLoS One. 2015;10(6):e0128526. PMID: 26039059; PMCID: PMC4454698. doi:10.1371/journal.pone.0128526
  • Manfredini R, Boari B, Bressan S, et al. Influence of circadian rhythm on mortality after myocardial infarction: data from a prospective cohort of emergency calls. Am J Emerg Med. 2004;22(7):555–559. PMID: 15666260. doi:10.1016/j.ajem.2004.08.014
  • Chaulin AM. [Main analytical characteristics of laboratory methods for the determination of cardiac troponins: a review from the historical and modern points of view]. Orv Hetil. 2022 Jan 2;16:3(1)12–20. doi:10.1556/650.2021.32296. PMID: 34974429.