69
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Repurposing Metformin for the Treatment of Atrial Fibrillation: Current Insights

ORCID Icon, ORCID Icon, , , , ORCID Icon, ORCID Icon, , & ORCID Icon show all
Pages 255-288 | Received 12 Feb 2024, Accepted 05 Jun 2024, Published online: 21 Jun 2024

References

  • Roth GA, Mensah GA, Johnson CO, et al. Global Burden of Cardiovascular Diseases and Risk Factors, 1990–2019: update From the GBD 2019 Study. J Am Coll Cardiol. 2020;76(25):2982. doi:10.1016/j.jacc.2020.11.010
  • WHO Cardiovascular diseases (CVDs). Available from: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds). Accessed June 10, 2024.
  • Amini M, Zayeri F, Salehi M. Trend analysis of cardiovascular disease mortality, incidence, and mortality-to-incidence ratio: results from global burden of disease study 2017. BMC Public Health. 2021;21:401. doi:10.1186/s12889-021-10429-0
  • Garattini S, Bertele’ V. Efficacy, safety and cost of new cardiovascular drugs: a survey. Eur J Clin Pharmacol. 2008;59(8–9):701–706. doi:10.1007/s00228-003-0634-y
  • Braunwald E. Gliflozins in the Management of Cardiovascular Disease. N Engl J Med. 2022;386(21):2024–2034. doi:10.1056/NEJMra2115011
  • Kosiborod MN, Abildstrøm SZ, Borlaug BA, et al. STEP-HFpEF Trial Committees and Investigators. Semaglutide in Patients with Heart Failure with Preserved Ejection Fraction and Obesity. N Engl J Med. 2023;389(12):1069–1084. doi:10.1056/NEJMoa2306963
  • Lincoff AM, Brown-Frandsen K, Colhoun HM, et al. SELECT Trial Investigators. Semaglutide and Cardiovascular Outcomes in Obesity without Diabetes. N Engl J Med. 2023;389(24):2221–2232. doi:10.1056/NEJMoa2307563
  • Ozawa S, Shankar R, Leopold C, et al. Access to medicines through health systems in low- and middle-income countries. Health Policy Plan. 2019;34(Supplement_3):iii1–iii3. doi:10.1093/heapol/czz119
  • Gaziano TA, Bitton A, Anand S, et al. Growing epidemic of coronary heart disease in low- and middle-income countries. Curr Probl Cardiol. 2010;35(2):72–115. doi:10.1016/j.cpcardiol.2009.10.002
  • Granger CB, Pocock SJ, Gersh BJ. The need for new clinical trials of old cardiovascular drugs. Nat Rev Cardiol. 2022;20(2):71–72. doi:10.1038/s41569-022-00819-1
  • Samuel SM, Varghese E, Kubatka P, et al. Metformin: the Answer to Cancer in a Flower? Current Knowledge and Future Prospects of Metformin as an Anti-Cancer Agent in Breast Cancer. Biomolecules. 2019;9(12):846. doi:10.3390/biom9120846
  • Mohammed I, Hollenberg MD, Ding H, Triggle CR. A Critical Review of the Evidence That Metformin Is a Putative Anti-Aging Drug That Enhances Healthspan and Extends Lifespan. Front Endocrinol (Lausanne). 2021;2:718942. doi:10.3389/fendo.2021.718942
  • Triggle CR, Mohammed I, Bshesh K, et al. Metformin: is it a drug for all reasons and diseases? Metabolism. 2022;133:155223. doi:10.1016/j.metabol.2022.155223
  • Pushpakom S, Iorio F, Eyers PA, et al. Drug repurposing: progress, challenges and recommendations. Nat Rev Drug Discov. 2019;18(1):41–58. doi:10.1038/nrd.2018.168
  • Dal Canto E, Ceriello A, Rydén L, et al. Diabetes as a cardiovascular risk factor: an overview of global trends of macro and micro vascular complications. European Journal of Preventive Cardiology. 2019;26(2_suppl):25–32. doi:10.1177/2047487319878371
  • Benjamin EJ, Levy D, Vaziri SM, et al. Independent risk factors for atrial fibrillation in a population-based cohort. The Framingham Heart Study. JAMA. 1994;271(11):840–844. doi:10.1001/jama.1994.03510350050036
  • Dublin S, Glazer NL, Smith NL, et al. Diabetes mellitus, glycemic control, and risk of atrial fibrillation. J Gen Intern Med]. 2010;25(8):853–858. doi:10.1007/s11606-010-1340-y
  • Huxley RR, Filion KB, Konety S, Alonso A. Meta-analysis of cohort and case-control studies of type 2 diabetes mellitus and risk of atrial fibrillation. Am J Cardiol. 2011;108(1):56–62. doi:10.1016/j.amjcard.2011.03.004
  • Perez MV, Wang PJ, Larson JC, et al. Risk factors for atrial fibrillation and their population burden in postmenopausal women: the Women’s Health Initiative Observational Study. Heart. 2013;99(16):1173–1178. doi:10.1136/heartjnl-2013-303798
  • Qi W, Zhang N, Korantzopoulos P, et al. Serum glycated hemoglobin level as a predictor of atrial fibrillation: a systematic review with meta-analysis and metaregression. PLoS One. 2017;12(3):e0170955. doi:10.1371/journal.pone.0170955
  • Sun Y, Hu D. The link between diabetes and atrial fibrillation: cause or correlation? J Cardiovasc Dis Res. 2010;1(1):10–11. doi:10.4103/0975-3583.59978
  • Wang A, Green JB, Halperin JL, et al. Atrial Fibrillation and Diabetes Mellitus: JACC Review Topic of the Week. J Am Coll Cardiol. 2019;74(8):1107–1115. doi:10.1016/j.jacc.2019.07.020
  • Xiong Z, Liu T, Tse G, et al. A machine learning aided systematic review and meta-analysis of the relative risk of atrial fibrillation in patients with diabetes mellitus. Front Physiol. 2018;9:835. doi:10.3389/fphys.2018.00835
  • Davis TME, Parsons RW, Broadhurst RJ, et al. Arrhythmias and Mortality After Myocardial Infarction in Diabetic Patients: relationship to diabetes treatment. Diabetes Care. 1998;21(4):637–640. doi:10.2337/diacare.21.4.637
  • Chang SH, Wu LS, Chiou MJ, et al. Association of metformin with lower atrial fibrillation risk among patients with type 2 diabetes mellitus: a population-based dynamic cohort and in vitro studies. Cardiovasc Diabetol. 2014;13(1):1–8. doi:10.1186/s12933-014-0123-x
  • Shi W, Zhang W, Zhang D, et al. Comparison of the effect of glucose-lowering agents on the risk of atrial fibrillation: a network meta-analysis. Heart Rhythm. 2021;18(7):1090–1096. doi:10.1016/j.hrthm.2021.03.007
  • Chen HY, Yang FY, Jong GP, Liou YS. Antihyperglycemic drugs use and new-onset atrial fibrillation in elderly patients. Eur J Clin Invest. 2017;47(5):388–393. doi:10.1111/eci.12754
  • Liou YS, Yang FY, Chen HY, Jong GP. Antihyperglycemic drugs use and new-onset atrial fibrillation: a population-based nested case control study. PLoS One. 2018;13(8):e0197245. doi:10.1371/journal.pone.0197245
  • Ostropolets A, Elias PA, Reyes MV, et al. Metformin Is Associated with a Lower Risk of Atrial Fibrillation and Ventricular Arrhythmias Compared to Sulfonylureas: an Observational Study. Circ Arrhythm Electrophysiol. 2021;14(3):e009115. doi:10.1161/CIRCEP.120.009115
  • Kim S, Park SY, Kim B, et al. Association between antidiabetic drugs and the incidence of atrial fibrillation in patients with type 2 diabetes: a nationwide cohort study in South Korea. Diabet Res Clin Pract. 2023:198. doi:10.1016/j.diabres.2023.110626
  • Iqbal A, Tekin Z, Kattan MW, et al. Association between first-line monotherapy with metformin and the risk of atrial fibrillation (AMRAF) in patients with type 2 diabetes. J Diabetes Complications. 2022;36(11):108315. doi:10.1016/j.jdiacomp.2022.108315
  • Zhou J, Zhang G, Chang C, et al. Metformin versus sulphonylureas for new onset atrial fibrillation and stroke in type 2 diabetes mellitus: a population-based study. Acta Diabetol. 2022;59(5):697–709. doi:10.1007/s00592-021-01841-4
  • Lal JC, Mao C, Zhou Y, et al. Transcriptomics-based network medicine approach identifies metformin as a repurposable drug for atrial fibrillation. Cell Reports Med. 2022;3(10):100749.
  • Vinciguerra M, Olier I, Ortega-Martorell S, et al. New use for an old drug: metformin and atrial fibrillation. Cell Reports Med. 2022;3(12):100875. doi:10.1016/j.xcrm.2022.100875
  • Nantsupawat T, Wongcharoen W, Chattipakorn SC, Chattipakorn N. Effects of metformin on atrial and ventricular arrhythmias: evidence from cell to patient. Cardiovasc Diabetol. 2020;19(1):198. doi:10.1186/s12933-020-01176-4
  • Li JZ, Li YR. Cardiovascular Protection by Metformin: latest Advances in Basic and Clinical Research. Cardiology. 2023;148(4):374–384. doi:10.1159/000531432
  • Bailey CJ. Metformin: effects on micro and macrovascular complications in type 2 diabetes. Cardiovasc Drugs Ther. 2008;22(3):215–224. doi:10.1007/s10557-008-6092-0
  • Triggle CR, Marei I, Ye K, et al. Repurposing Metformin for Vascular Disease. Curr Med Chem. 2023;30(35):3955–3978. doi:10.2174/0929867329666220729154615
  • Preiss D, Lloyd SM, Ford I, et al. Metformin for non-diabetic patients with coronary heart disease (the CAMERA study): a randomised controlled trial. Lancet Diabetes Endocrinol. 2014;2(2):116–124. doi:10.1016/S2213-8587(13)70152-9
  • Miyasaka Y, Barnes ME, Gersh BJ, et al. Secular trends in incidence of atrial fibrillation in Olmsted County, Minnesota, 1980 to 2000, and implications on the projections for future prevalence. Circulation. 2006;114(2):119–125. doi:10.1161/CIRCULATIONAHA.105.595140
  • Nayak S, Natarajan B, Pai RG. Etiology, Pathology, and Classification of Atrial Fibrillation. Int J Angiol. 2020;29(2):65–71. doi:10.1055/s-0040-1705153
  • Bailey CJ. Metformin: historical overview. Diabetologia. 2017;60(9):1566–1576. doi:10.1007/s00125-017-4318-z
  • Bailey CJ, Turner RC. Metformin. N Engl J Med. 1996;334(9):574–579. doi:10.1056/NEJM199602293340906
  • Witters LA. The blooming of the French lilac. J Clin Invest. 2001;108(8):1105–1107. doi:10.1172/JCI14178
  • Scarpello JH, Howlett HC. Metformin therapy and clinical uses. Diab Vasc Dis Res. 2008;5(3):157–167. doi:10.3132/dvdr.2008.027
  • Khilnani G. Metformin: a Reflection on My Journey as Antidiabetic Drug. GAIMS Journal of Medical Sciences. 2023;3(2):34–40.
  • Viollet B, Guigas B, Sanz Garcia N, et al. Cellular and molecular mechanisms of metformin: an overview. Clin Sci (Lond). 2012;122(6):253–270. doi:10.1042/CS20110386
  • Bosi E. Metformin—The Gold Standard in Type 2 Diabetes: what Does the Evidence Tell Us? Diabetes Obesity Metab. 2009;11,3–8. doi:10.1111/j.1463-1326.2008.01031.x
  • Foretz M, Hébrard S, Leclerc J, et al. Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state. J Clin Invest. 2010;120(7):2355–2369. doi:10.1172/JCI40671
  • Gu S, Tang Z, Shi L, et al. Cost-Minimization Analysis of Metformin and Acarbose in Treatment of Type 2 Diabetes. Value Heal Reg Issues. 2015;6:84–88. doi:10.1016/j.vhri.2015.03.012
  • Glossmann HH, Lutz OMD. Pharmacology of metformin - An update. Eur J Pharmacol. 2019;865:172782. doi:10.1016/j.ejphar.2019.172782
  • He L. Metformin and Systemic Metabolism. Trends Pharmacol Sci. 2020;41(11):868–881. doi:10.1016/j.tips.2020.09.001
  • LaMoia TE, Shulman GI. Cellular and Molecular Mechanisms of Metformin Action. Endocr Rev. 2022;42(1):77–96. doi:10.1210/endrev/bnaa023
  • Corcoran C, Jacobs TF. Metformin. 2023. Treasure Island (FL): StatPearls Publishing; 2024.
  • Johnson NP. Metformin use in women with polycystic ovary syndrome. Annals of Translational Med. 2014;2(6):56. doi:10.3978/j.issn.2305-5839.2014.04.15
  • Pryor R, Cabreiro F. Repurposing metformin: an old drug with new tricks in its binding pockets. Biochem J. 2015;471(3):307–322. doi:10.1042/BJ20150497
  • Samuel SM, Varghese E, Büsselberg D. Therapeutic Potential of Metformin in COVID-19: reasoning for Its Protective Role. Trends Microbiol. 2021;29(10):894–907. doi:10.1016/j.tim.2021.03.004
  • Salvatore T, Pafundi PC, Galiero R, et al. Can Metformin Exert as an Active Drug on Endothelial Dysfunction in Diabetic Subjects? Biomedicines. 2020a;9(1):3. doi:10.3390/biomedicines9010003
  • Salvatore T, Pafundi PC, Morgillo F, et al. Metformin: an old drug against old age and associated morbidities. Diabet Res Clin Pract. 2020b;160:108025. doi:10.1016/j.diabres.2020.108025
  • Varghese E, Samuel SM, Liskova A, et al. Diabetes and coronavirus (SARS-CoV-2): molecular mechanism of Metformin intervention and the scientific basis of drug repurposing. PLoS Pathog. 2021;17(6):e1009634. doi:10.1371/journal.ppat.1009634
  • Martin DE, Cadar AN, Bartley JM. Old drug, new tricks: the utility of metformin in infection and vaccination responses to influenza and SARS-CoV-2 in older adults. Frontiers in Aging. 2023;4:1–10.
  • Zimmerman SC, Ferguson EL, Choudhary V, et al. Metformin Cessation and Dementia Incidence. JAMA Network Open. 2023;6(10):e2339723. doi:10.1001/jamanetworkopen.2023.39723
  • OHY Y, Suissa S. Metformin and Cancer: solutions to a Real-World Evidence Failure. Diabetes Care. 2023;46(5):904–912. doi:10.2337/dci22-0047
  • Goodwin PJ, Chen BE, Gelmon KA, et al. Effect of metformin vs placebo on invasive disease-free survival in patients with breast cancer: the MA.32 randomized clinical trial. JAMA. 2022;327(20):1963–1973. doi:10.1001/jama.2022.6147
  • Suissa S, Azoulay L. Metformin and the risk of cancer: time-related biases in observational studies. Diabetes Care. 2012;35(12):2665–2673. doi:10.2337/dc12-0788
  • Iudici M, Porcher R, Riveros C, et al. Time-dependent biases in observational studies of comparative effectiveness research in rheumatology. A methodological review. Ann Rheum Dis. 2019;78(4):562–569. doi:10.1136/annrheumdis-2018-214544
  • Luo F, Das A, Chen J, et al. Metformin in patients with and without diabetes: a paradigm shift in cardiovascular disease management. Cardiovasc Diabetol. 2019;18(1):54. doi:10.1186/s12933-019-0860-y
  • Zheng J, Xu M, Yang Q, et al. Efficacy of metformin targets on cardiometabolic health in the general population and non-diabetic individuals: a Mendelian randomization study. EBioMedicine. 2023;96:104803. doi:10.1016/j.ebiom.2023.104803
  • Rena G, Lang CC. Repurposing Metformin for Cardiovascular Disease. Circulation. 2018;137(5):422–424. doi:10.1161/CIRCULATIONAHA.117.031735
  • Fetro C, Scherman D. Drug repurposing in rare diseases: myths and reality. Therapie. 2020;75(2):157–160. doi:10.1016/j.therap.2020.02.006
  • Jacob S, Knoll S, Huhn C, et al. Effects of guanylurea, the transformation product of the antidiabetic drug metformin, on the health of brown trout (Salmo trutta f. fario). PeerJ. 2019;7:e7289. doi:10.7717/peerj.7289
  • Chaignaud P, Gruffaz C, Borreca A, et al. A Methylotrophic Bacterium Growing with the Antidiabetic Drug Metformin as Its Sole Carbon, Nitrogen and Energy Source. Microorganisms. 2022;10(11):2302. doi:10.3390/microorganisms10112302
  • Pentikainen PJ, Neuvonen PJ, Penttila A. Pharmacokinetics of metformin after intravenous and oral administration to man. Eur J Clin Pharmacol. 1979;16(3):195–202. doi:10.1007/BF00562061
  • Tucker GT, Casey C, Phillips PJ, et al. Metformin kinetics in healthy subjects and in patients with diabetes mellitus. Br J Clin Pharmacol. 1981;12(2):235–246. doi:10.1111/j.1365-2125.1981.tb01206.x
  • Christensen MM, Brasch-Andersen C, Green H, et al. The pharmacogenetics of metformin and its impact on plasma metformin steady-state levels and glycosylated hemoglobin A1c. Pharmacogenet Genomics. 2011;21(12):837–850. doi:10.1097/FPC.0b013e32834c0010
  • Graham GG, Punt J, Arora M, et al. Clinical pharmacokinetics of metformin. Clin Pharmacokinet. 2011;50(2):81–98. doi:10.2165/11534750-000000000-00000
  • Gong L, Goswami S, Giacomini KM, et al. Metformin pathways: pharmacokinetics and pharmacodynamics. Pharmacogenet Genomics. 2012;22(11):820–827. doi:10.1097/FPC.0b013e3283559b22
  • Scheen AJ. Clinical pharmacokinetics of metformin. Clin Pharmacokinet. 1996;30(5):359–371. doi:10.2165/00003088-199630050-00003
  • Wang DS, Jonker JW, Kato Y, et al. Involvement of organic cation transporter 1 in hepatic and intestinal distribution of metformin. J Pharmacol Exp Ther. 2002;302(2):510–155. doi:10.1124/jpet.102.034140
  • Takane H, Shikata E, Otsubo K, et al. Polymorphism in human organic cation transporters and metformin action. Pharmacogenomics. 2008;9(4):415–422. doi:10.2217/14622416.9.4.415
  • Liang X, Giacomini KM. Transporters Involved in Metformin Pharmacokinetics and Treatment Response. J Pharm Sci. 2017;106(9):2245–2250. doi:10.1016/j.xphs.2017.04.078
  • Sirtori CR, Franceschini G, Galli-Kienle M, et al. Disposition of metformin (N,N-dimethylbiguanide) in man. Clin Pharmacol Ther. 1978;24(6):683–693. doi:10.1002/cpt1978246683
  • Kajbaf F, De Broe ME, Lalau JD. Therapeutic Concentrations of Metformin: a Systematic Review. Clin Pharmacokinet. 2016;55(4):439–459. doi:10.1007/s40262-015-0323-x
  • Zhou G, Myers R, Li Y, et al. Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest. 2001;108(8):1167–1174. doi:10.1172/JCI13505
  • Shaw RJ, Lamia KA, Vasquez D, et al. The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science. 2005;310(5754):1642–1646. doi:10.1126/science.1120781
  • Zhou K, Bellenguez C, Spencer CC, et al.; GoDARTS and UKPDS Diabetes Pharmacogenetics Study Group; Wellcome Trust Case Control Consortium 2. Common variants near ATM are associated with glycemic response to metformin in type 2 diabetes. Nat Genet. 2011;43(2):117–120. doi:10.1038/ng.735.
  • Menendez JA, Cufí S, Oliveras-Ferraros C, et al. Metformin and the ATM DNA damage response (DDR): accelerating the onset of stress-induced senescence to boost protection against cancer. Aging. 2011;3(11):1063–1077. doi:10.18632/aging.100407
  • Meng S, Cao J, He Q, et al. Metformin activates AMP-activated protein kinase by promoting formation of the αβγ heterotrimeric complex. J Biol Chem. 2015;290(6):3793–3802. doi:10.1074/jbc.M114.604421
  • Evans JM, Donnelly LA, Emslie-Smith AM, et al. Metformin and reduced risk of cancer in diabetic patients. BMJ. 2005;330(7503):1304–1305. doi:10.1136/bmj.38415.708634.F7
  • Yee SW, Chen L, Giacomini KM. The role of ATM in response to metformin treatment and activation of AMPK. Nat Genet. 2012;44(4):359–360. doi:10.1038/ng.2236
  • Potente M, Ghaeni L, Baldessari D, et al. SIRT1 controls endothelial angiogenic functions during vascular growth. Genes Dev. 2007;21(20):2644–2658. doi:10.1101/gad.435107
  • Arunachalam G, Samuel SM, Marei I, et al. Metformin modulates hyperglycaemia-induced endothelial senescence and apoptosis through SIRT1. Br J Pharmacol. 2014;171(2):523–535. doi:10.1111/bph.12496
  • Zhan Y-Y, Chen Y, Zhang Q, et al. The orphan nuclear receptor Nur77 regulates LKB1 localization and activates AMPK. Nature Chemical Biology. 2012;8(11):897–904. doi:10.1038/nchembio.1069
  • Venu VKP, Saifeddine M, Mihara K, et al. Metformin Prevents Hyperglycemia-Associated, Oxidative Stress-Induced Vascular Endothelial Dysfunction: essential Role for the Orphan Nuclear Receptor Human Nuclear Receptor 4A1 (Nur77). Mol Pharmacol. 2021;100(5):428–455. doi:10.1124/molpharm.120.000148
  • El-Mir MY, Nogueira V, Fontaine E, et al. Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I. J Biol Chem. 2000;275(1):223–228. doi:10.1074/jbc.275.1.223
  • Owen MR, Doran E, Halestrap AP. Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem J. 2000;3.
  • Bridges HR, Blaza JN, Yin Z, et al. Structural basis of mammalian respiratory complex I inhibition by medicinal biguanides. Science. 2023;379(6630):351–357. doi:10.1126/science.ade3332
  • Timmins P, Donahue S, Meeker J, et al. Steady-state pharmacokinetics of a novel extended-release metformin formulation. Clin Pharmacokinet. 2005;44(7):721–729. doi:10.2165/00003088-200544070-00004
  • Wilcock C, Wyre ND, Bailey CJ. Subcellular distribution of metformin in rat liver. J Pharm Pharmacol. 1991;43(6):442–444. doi:10.1111/j.2042-7158.1991.tb03507.x
  • Wilcock C, Bailey CJ. Accumulation of metformin by tissues of the normal and diabetic mouse. Xenobiotica. 1994;24(1):49–57. doi:10.3109/00498259409043220
  • Kinaan M, Ding H, Triggle CR. Metformin: an Old Drug for the Treatment of Diabetes but a New Drug for the Protection of the Endothelium. Med Princ Pract. 2015;24(5):401–415. doi:10.1159/000381643
  • He L, Wondisford FE. Metformin action: concentrations matter. Cell Metab. 2015;21(2):159–162. doi:10.1016/j.cmet.2015.01.003
  • Fontaine E. Metformin-Induced Mitochondrial Complex I Inhibition: facts, Uncertainties, and Consequences. Front Endocrinol (Lausanne). 2018;9:753. doi:10.3389/fendo.2018.00753
  • Di Magno L, Di Pastena F, Bordone R, et al. The Mechanism of Action of Biguanides: new Answers to a Complex Question. Cancers (Basel). 2022;14. doi:10.3390/cancers14133220
  • Hardie DG, Ross FA, Hawley SA. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol. 2012;13(4):251–262. doi:10.1038/nrm3311
  • Steinberg GR, Hardie DG. New insights into activation and function of the AMPK. Nat Rev Mol Cell Biol. 2023;24:255–272. doi:10.1038/s41580-022-00547-x
  • Cantó C, Auwerx J. PGC-1alpha, SIRT1 and AMPK, an energy sensing network that controls energy expenditure. Curr Opin Lipidol. 2009;20(2):98–105. doi:10.1097/MOL.0b013e328328d0a4
  • Krausova L, Stejskalova L, Wang H, et al. Metformin suppresses pregnane X receptor (PXR)-regulated transactivation of CYP3A4 gene. Biochem Pharmacol. 2011;82(11):1771–1780. doi:10.1016/j.bcp.2011.08.023
  • McCreight LJ, Bailey CJ, Pearson ER. Metformin and the gastrointestinal tract. Diabetologia. 2016;59(3):426–435. doi:10.1007/s00125-015-3844-9
  • Chen ZP, Mitchelhill KI, Michell BJ, et al. AMP-activated protein kinase phosphorylation of endothelial NO synthase. FEBS Lett. 1999;443(3):285–289. doi:10.1016/s0014-5793(98)01705-0
  • Dimmeler S, Fleming I, Fisslthaler B, et al. Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature. 1999;399(6736):601–605. doi:10.1038/21224
  • Morrow VA, Foufelle F, Connell JM, et al. Direct activation of AMP-activated protein kinase stimulates nitric-oxide synthesis in human aortic endothelial cells. J Biol Chem. 2003;278(34):31629–31639. doi:10.1074/jbc.M212831200
  • Calvert JW, Gundewar S, Jha S, et al. Acute metformin therapy confers cardioprotection against myocardial infarction via AMPK-eNOS-mediated signaling. Diabetes. 2008;57(3):696–705. doi:10.2337/db07-1098
  • Driver C, Bamitale KDS, Kazi A, et al. Cardioprotective Effects of Metformin. J Cardiovasc Pharmacol. 2018;72(2):121–127. doi:10.1097/FJC.0000000000000599
  • Bailey CJ, Nattrass M. Treatment--metformin. Baillieres Clin Endocrinol Metab. 1988;2(2):455–476. doi:10.1016/s0950-351x(88)80043-0
  • Lkhagva B, Lee TW, Lin YK. Disturbed Cardiac Metabolism Triggers Atrial Arrhythmogenesis in Diabetes Mellitus: energy Substrate Alternate as a Potential Therapeutic Intervention. Cells. 2022;11(18):2915. doi:10.3390/cells11182915
  • Seyed Ahmadi S, Svensson AM, Pivodic A, et al. Risk of atrial fibrillation in persons with type 2 diabetes and the excess risk in relation to glycaemic control and renal function: a Swedish cohort study. Cardiovasc Diabetol. 2020;19(1):9. doi:10.1186/s12933-019-0983-1
  • Tan X, Pan X, Wu X, et al. Glucagon-like peptide-1 receptor agonists as add-on therapy to insulin for type 1 diabetes mellitus. Front Pharmacol. 2023;14:975880. doi:10.3389/fphar.2023.975880
  • Dowling RJO, Niraula S, Stambolic V, et al. Metformin in cancer: translational challenges. J Mol Endocrinol. 2012;48(3):R31–43. doi:10.1530/JME-12-0007
  • Al-Inany H, Johnson N. Drugs for anovulatory infertility in polycystic ovary syndrome. BMJ. 2006;332(7556):1461–1462. doi:10.1136/bmj.332.7556.1461
  • Jakubowicz D, Seppala M. Effects of Metformin on Hyperinsulinemia, Hyperandrogenism and Reproduction in Women with Polycystic Ovarian Syndrome. J Endocrinol Diabetes Obes. 2014;2(2):1034. doi:10.1016/j.jacc.2014.02.555
  • Glueck CJ, Wang P, Kobayashi S, et al. Metformin therapy throughout pregnancy reduces the development of gestational diabetes in women with polycystic ovary syndrome. Fertil Steril. 2002;77(3):520–525. doi:10.1016/s0015-0282(01)03202-2
  • Fougner KJ, Vanky E, Carlsen SM. Metformin has no major effects on glucose homeostasis in pregnant women with PCOS: results of a randomized double-blind study. Scand J Clin Lab Invest. 2008;68(8):771–776. doi:10.1080/00365510802254620
  • Legro RS. Metformin during pregnancy in polycystic ovary syndrome: another vitamin bites the dust. J Clin Endocrinol Metab. 2010;95(12):5199–5202. doi:10.1210/jc.2010-2301
  • Dunne F, Newman C, Alvarez-Iglesias A, et al. Early Metformin in Gestational Diabetes: a Randomized Clinical Trial. JAMA. 2023;330(16):1547–1556. doi:10.1001/jama.2023.19869
  • Wensink MJ, Lu Y, Tian L, et al. Preconception Antidiabetic Drugs in Men and Birth Defects in Offspring: A Nationwide Cohort Study. Ann Intern Med. 2022;175(5):665–673. doi:10.7326/M21-4389
  • Given JE, Loane M, Garne E, et al. Metformin exposure in first trimester of pregnancy and risk of all or specific congenital anomalies: exploratory case-control study. BMJ. 2018;361:k2477. doi:10.1136/bmj.k2477
  • Tarry-Adkins JL, Ozanne SE, Aiken CE. Impact of metformin treatment during pregnancy on maternal outcomes: a systematic review/meta-analysis. Sci Rep. 2021;11(1):9240. doi:10.1038/s41598-021-88650-5
  • Brand KMG, Saarelainen L, Sonajalg J, et al. Metformin in pregnancy and risk of adverse long-term outcomes: a register-based cohort study. BMJ Open Diabetes Res Care. 2022;10(1):e002363. doi:10.1136/bmjdrc-2021-002363
  • Vanky E, Zahlsen K, Spigset O, et al. Placental passage of metformin in women with polycystic ovary syndrome. Fertil Steril. 2005;83(5):1575–1578. doi:10.1016/j.fertnstert.2004.11.051
  • Nguyen L, Chan SY, Teo AKK. Metformin from mother to unborn child - Are there unwarranted effects? EBioMedicine. 2018;35:394–404. doi:10.1016/j.ebiom.2018.08.047
  • Feig DS, Donovan LE, Zinman B, et al. MiTy Collaborative Group. Metformin in women with type 2 diabetes in pregnancy (MiTy): a multicentre, international, randomised, placebo-controlled trial. Lancet Diabetes Endocrinol. 2020:834–844. doi:10.1016/S2213-8587(20)30310-7
  • Wang L, Hou Y, Meng D, et al. Vitamin B12 and Folate Levels During Pregnancy and Risk of Gestational Diabetes Mellitus: a Systematic Review and Meta-Analysis. Front Nutr. 2021;8:670289. doi:10.3389/fnut.2021.670289
  • Lee N, Hebert MF, Wagner DJ, et al. Organic Cation Transporter 3 Facilitates Fetal Exposure to Metformin during Pregnancy. Mol Pharmacol. 2018;94(4):1125–1131. doi:10.1124/mol.118.112482
  • Briggs GG, Ambrose PJ, Nageotte MP, et al. Excretion of metformin into breast milk and the effect on nursing infants. Obstet Gynecol. 2005;105(6):1437–1441. doi:10.1097/01.AOG.0000163249.65810.5b
  • George MM, Copeland KC. Current Treatment Options for Type 2 Diabetes Mellitus in Youth: today’s Realities and Lessons from the TODAY Study. Curr Diab Rep. 2013;13:72–80. doi:10.1007/s11892-012-0334-z
  • Priya G, Kalra S. Metformin in the management of diabetes during pregnancy and lactation. Drugs Context. 2018;7:212523. doi:10.7573/dic.212523
  • Niemuth NJ, Klaper RD. Emerging wastewater contaminant metformin causes intersex and reduced fecundity in fish. Chemosphere. 2015;135:38–45. doi:10.1016/j.chemosphere.2015.03.060
  • Niemuth NJ, Klaper RD. Low-dose metformin exposure causes changes in expression of endocrine disruption-associated genes. Aquat Toxicol. 2018;195:33–40. doi:10.1016/j.aquatox.2017.12.003
  • Alla LNR, Monshi M, Siddiqua Z, et al. Detection of endocrine disrupting chemicals in Danio rerio and Daphnia pulex: step-one, behavioral screen. Chemosphere. 2021;271:129442. doi:10.1016/j.chemosphere.2020.129442
  • Suhre K, Stephan N, Zaghlool S, et al. Matching Drug Metabolites from Non-Targeted Metabolomics to Self-Reported Medication in the Qatar Biobank Study. Metabolites. 2022;12(3):249. doi:10.3390/metabo12030249
  • Petrie JR, Chaturvedi N, Ford I, et al. Metformin in adults with type 1 diabetes: d esign and Methods of REducing with MetfOrmin Vascular Adverse Lesions (REMOVAL): a n international multicentre trial. Diabetes Obesity Metab. 2017;19(4):509–516. doi:10.1111/dom.12840
  • Petrie JR, Chaturvedi N, Ford I, et al. Cardiovascular and metabolic effects of metformin in patients with type 1 diabetes (REMOVAL): a double-blind, randomised, placebo-controlled trial. Lancet Diabetes Endocrinol. 2017;5(8):597–609. doi:10.1016/S2213-8587(17)30194-8
  • Nasri H, Rafieian-Kopaei M. Metformin: current knowledge. J Res Med Sci. 2014;19(7):658–664.
  • McGovern A, Tippu Z, Hinton W, et al. Comparison of medication adherence and persistence in type 2 diabetes: a systematic review and meta analysis. Diabetes Obesity Metab. 2018;20(4):1040–1043. doi:10.1111/dom.13160
  • Rena G, Hardie DG, Pearson ER. The mechanisms of action of metformin. Diabetologia. 2017;60(9):1577–1585. doi:10.1007/s00125-017-4342-z
  • Bonnet F, Scheen A. Understanding and overcoming metformin gastrointestinal intolerance. Diabetes Obes Metab. 2017;19(4):473–481. doi:10.1111/dom.12854
  • Wong AKF, Howie J, Petrie JR, et al. AMP-activated protein kinase pathway: a potential therapeutic target in cardiometabolic disease. Clin Sci. 2009;116(8):607–620. doi:10.1042/CS20080066
  • Bell DSH. Metformin-induced vitamin B12 deficiency can cause or worsen distal symmetrical, autonomic and cardiac neuropathy in the patient with diabetes. Diabetes Obes Metab. 2022;24(8):1423–1428. doi:10.1111/dom.14734
  • Bauman WA, Shaw S, Jayatilleke E, et al. Increased intake of calcium reverses vitamin B12 malabsorption induced by metformin. Diabetes Care. 2000;23(9):1227–1231. doi:10.2337/diacare.23.9.1227
  • Sayedali E, Yalin AE, Yalin S. Association between metformin and vitamin B12 deficiency in patients with type 2 diabetes. World J Diabetes. 2023;14(5):585–593. doi:10.4239/wjd.v14.i5.585
  • Wåhlén A, Haenni A, Johansson HE. Do we need to measure vitamin B12 and magnesium in morbidly obese patients with type 2 diabetes mellitus? Diabetes Metab Syndr Obes. 2017;10:151–154. doi:10.2147/DMSO.S131340
  • Chowdhury M, Nevitt S, Eleftheriadou A, et al. Cardiac autonomic neuropathy and risk of cardiovascular disease and mortality in type 1 and type 2 diabetes: a meta-analysis. BMJ Open Diabetes Res Care. 2021;9(2):e002480. doi:10.1136/bmjdrc-2021-002480
  • Nam YH, Brensinger CM, Bilker WB, et al. Serious Hypoglycemia and Use of Warfarin in Combination With Sulfonylureas or Metformin. Clin Pharmacol Ther. 2019;105(1):210–218. doi:10.1002/cpt.1146
  • Meadows M. Why drugs get pulled off the market. FDA Consum. 2002;36(1):11–17.
  • Stades AME, Heikens JT, Erkelens DW, et al. Metformin and lactic acidosis: cause or coincidence? A review of case reports. J Int Med. 2004;255(2):179–187. doi:10.1046/j.1365-2796.2003.01271.x
  • Stacpoole PW, Wright EC, Baumgartner TG, et al. Natural history and course of acquired lactic acidosis in adults. DCA-Lactic Acidosis Study Group. Am J Med. 1994;97(1):47–54. doi:10.1016/0002-9343(94)90047-7
  • Flory JH, Hennessy S, Bailey CJ, Inzucchi SE. Reports of Lactic Acidosis Attributed to Metformin, 2015-2018. Diabetes Care. 2020;43(1):244–246. doi:10.2337/dc19-0923
  • Stage TB, Brøsen K, Christensen MMH. A Comprehensive Review of Drug-Drug Interactions with Metformin. Clin Pharmacokinet. 2015;54(8):811–824. doi:10.1007/s40262-015-0270-6.159
  • May M, Schindler C. Clinically and pharmacologically relevant interactions of antidiabetic drugs. Ther Adv Endocrinol Metab. 2016;7(2):69–83. doi:10.1177/2042018816638050
  • Bachmakov I, Glaeser H, Fromm MF, König J. Interaction of oral antidiabetic drugs with hepatic uptake transporters: focus on organic anion transporting polypeptides and organic cation transporter 1. Diabetes. 2008;57(6):1463–1469. doi:10.2337/db07-1515
  • Choi MK, Jin QR, Ahn SH, et al. Sitagliptin attenuates metformin-mediated AMPK phosphorylation through inhibition of organic cation transporters. Xenobiotica. 2010;40(12):817–825. doi:10.3109/00498254.2010.520349
  • Leon BM, Maddox TM. Diabetes and cardiovascular disease: epidemiology, biological mechanisms, treatment recommendations and future research. World J Diabetes. 2015;6(13):1246–1258. doi:10.4239/wjd.v6.i13.1246
  • Deshmukh A, Ghannam M, Liang J, et al. Effect of metformin on outcomes of catheter ablation for atrial fibrillation. J Cardiovasc Electrophysiol. 2021;32(5):1232–1239. doi:10.1111/jce.14954
  • Stoll L, Lo JC. GLP-1 Receptor Agonists, the Holy Grail Preventing Atrial Fibrillation in Patients With T2D? JACC Basic Transl Sci. 2023;8(8):937–938. doi:10.1016/j.jacbts.2023.03.022
  • Bohne LJ, Jansen HJ, Dorey TW, et al. Glucagon-Like Peptide-1 Protects Against Atrial Fibrillation and Atrial Remodeling in Type 2 Diabetic Mice. JACC Basic Transl Sci. 2023;8(8):922–936. doi:10.1016/j.jacbts.2023.01.005
  • Bu Y, Peng M, Tang X, et al. Protective effects of metformin in various cardiovascular diseases: clinical evidence and AMPK-dependent mechanisms. J Cell Mol Med. 2022;26(19):4886–4903. doi:10.1111/jcmm.17519
  • Raubenheimer PJ, Cushman WC, Avezum A, et al. Dulaglutide and incident atrial fibrillation or flutter in patients with type 2 diabetes: a post hoc analysis from the REWIND randomized trial. Diabetes Obes Metab. 2022;24(4):704–712. doi:10.1111/dom.14634
  • Wakili R, Voigt N, Kääb S, et al. Recent advances in the molecular pathophysiology of atrial fibrillation. J Clin Invest. 2011;121(8):2955–2968. doi:10.1172/JCI46315
  • Schotten U, Verheule S, Kirchhof P, et al. Pathophysiological mechanisms of atrial fibrillation: a translational appraisal. Physiol Rev. 2011;91(1):265–325. doi:10.1152/physrev.00031.2009
  • Yang F, Liu HH, Zhang L, et al. Advanced Glycation End Products Downregulate Connexin 43 and Connexin 40 in Diabetic Atrial Myocytes via the AMPK Pathway. Diabetes Metab Syndr Obes. 2023;16:3045–3056. doi:10.2147/DMSO.S419189
  • Nabauer M, Gerth A, Limbourg T, et al. The Registry of the German Competence NETwork on Atrial Fibrillation: patient characteristics and initial management. Europace. 2009;11(4):423–434. doi:10.1093/europace/eun369
  • Goudis CA, Korantzopoulos P, Ntalas IV, et al. Diabetes mellitus and atrial fibrillation: pathophysiological mechanisms and potential upstream therapies. Int J Cardiol. 2015;184(1):617–622.
  • Michaud GF, Stevenson WG. Atrial Fibrillation. N Engl J Med. 2021;384(4):353–361. doi:10.1056/NEJMcp2023658
  • Li J, Gao M, Zhang M, et al. Treatment of atrial fibrillation: a comprehensive review and practice guide. Cardiovasc J Afr. 2020;31(3):153–158. doi:10.5830/CVJA-2019-064
  • Aktas G, Atak Tel BM, et al. Treatment of type 2 diabetes patients with heart conditions. Expert Rev Endocrinol Metab. 2023;18(3):255–265. doi:10.1080/17446651.2023.2204941
  • Qian LL, Liu XY, Li XY, et al. Effects of Electrical Remodeling on Atrial Fibrillation in Diabetes Mellitus. Rev Cardiovasc Med. 2023;24(1):3.
  • Snell-Bergeon JK, Wadwa RP. Hypoglycemia, Diabetes, and Cardiovascular Disease. Diabetes Technol Ther. 2012;14 Suppl 1(Suppl 1):S51–8. doi:10.1089/dia.2012.0031
  • Tsujimoto T, Sugiyama T, Noda M, et al. Intensive Glycemic Therapy in Patients With Type 2 Diabetes on β-Blockers. Diabetes Care. 2016;39(10):1818–1826. doi:10.2337/dc16-0721
  • Yu O, Azoulay L, Yin H, et al. Sulfonylureas as Initial Treatment for Type 2 Diabetes and the Risk of Severe Hypoglycemia. Am J Med. 2017;131(3):317.e11–317.e22. doi:10.1016/j.amjmed.2017.09.044
  • Akirov A, Grossman A, Shochat T, Shimon I. Hyperglycemia on admission and hospitalization outcomes in patients with atrial fibrillation. Clin Cardiol. 2017;40(11):1123–1128. doi:10.1002/clc.22801
  • Yuan M, Gong M, Zhang Z, et al. Hyperglycemia Induces Endoplasmic Reticulum Stress in Atrial Cardiomyocytes, and Mitofusin-2 Downregulation Prevents Mitochondrial Dysfunction and Subsequent Cell Death. Oxid Med Cell Longev. 2020:6569728. doi:10.1155/2020/6569728
  • Liu C, Fu H, Li J, et al. Hyperglycemia aggravates atrial interstitial fibrosis, ionic remodeling and vulnerability to atrial fibrillation in diabetic rabbits. Anadolu Kardiyol Derg. 2012;12(7):543–550. doi:10.5152/akd.2012.188
  • Mujović N, Marinković M, Mihajlović M, et al. Risk factor modification for the primary and secondary prevention of atrial fibrillation. Part 1. Kardiol Pol. 2020;78(3):192–202. doi:10.33963/KP.15240
  • Ceriello A, Monnier L, Owens D. Glycaemic variability in diabetes: clinical and therapeutic implications. Lancet Diabetes Endocrinol. 2019;7(3):221–230. doi:10.1016/S2213-8587(18)30136-0
  • Singh R, Barden A, Mori T, et al. Advanced glycation end-products: a review. Diabetologia. 2002;44(2):129–146. doi:10.1007/s001250051591
  • Zheng DL, Wu QR, Zeng P, et al. Advanced glycation end products induce senescence of atrial myocytes and increase susceptibility of atrial fibrillation in diabetic mice. Aging Cell. 2022;21(12):e13734. doi:10.1111/acel.13734
  • Raposeiras-Roubín S, Rodiño-Janeiro BK, Grigorian-Shamagian L, et al. Evidence for a role of advanced glycation end products in atrial fibrillation. Int J Cardiol. 2012;157(3):397–402. doi:10.1016/j.ijcard.2011.05.072
  • Lee TW, Lee TI, Lin YK, et al. Effect of antidiabetic drugs on the risk of atrial fibrillation: mechanistic insights from clinical evidence and translational studies. Cell Mol Life Sci. 2021;78:923–934. doi:10.1007/s00018-020-03648-y
  • Fu H. Products (AGEs) and their Receptor Axis in Atrial Fibrillation. Mini Rev Med Chem. 2019;19(13):1040–1048. doi:10.2174/1389557519666190311140737
  • Roth GA. Factors, 1990–2019: update From the GBD 2019 Study. J Am Coll Cardiol. 2020;76(25):2982. doi:10.1016/j.jacc.2020.11.010
  • Mather KJ, Verma S, Anderson TJ. Improved endothelial function with metformin in type 2 diabetes mellitus. J Am Coll Cardiol. 2001;37(5):1344–1350. doi:10.1016/s0735-1097(01)01129-9
  • Triggle CR, Ding H. Metformin is not just an antihyperglycaemic drug but also has protective effects on the vascular endothelium. Acta Physiol (Oxf). 2017;219(1):138–151. doi:10.1111/apha.12644
  • Hong J, Zhang Y, Lai S, et al. Effects of Metformin Versus Glipizide on Cardiovascular Outcomes in Patients With Type 2 Diabetes and Coronary Artery Disease. Diabetes Care. 2013;36(5):1304–1311. doi:10.2337/dc12-0719
  • Vaccaro O, Masulli M, Nicolucci A, et al. Effects on the incidence of cardiovascular events of the addition of pioglitazone versus sulfonylureas in patients with type 2 diabetes inadequately controlled with metformin (TOSCA.IT): a randomised, multicentre trial. Lancet Diabetes Endocrinol. 2017;5(11):887–987. doi:10.1016/S2213-8587(17)30317-0
  • Paiva M, Riksen NP, Davidson SM, et al. Metformin prevents myocardial reperfusion injury by activating the adenosine receptor. J Cardiovasc Pharmacol. 2009;53(5):373–378. doi:10.1097/FJC.0b013e31819fd4e7
  • Riksen NP, Rongen GA. Targeting adenosine receptors in the development of cardiovascular therapeutics. Expert Rev Clin Pharmacol. 2012;5(2):199–218. doi:10.1586/ecp.12.8
  • Rankin AC, Brooks R, Ruskin JN, et al. Adenosine and the treatment of supraventricular tachycardia. Am J Med. 1992;92(6):655–664. doi:10.1016/0002-9343(92)90784-9
  • Koeppen M, Eckle T, Eltzschig HK. Selective deletion of the A1 adenosine receptor abolishes heart-rate slowing effects of intravascular adenosine in vivo. PLoS One. 2009;4(8):e6784. doi:10.1371/journal.pone.0006784
  • Mas M. A Close Look at the Endothelium: its Role in the Regulation of Vasomotor Tone. Eur Urol Suppl. 2009;8(2):48–57. doi:10.1016/j.eursup.2008.10.011
  • Domeier TL, Segal SS. Electromechanical and pharmacomechanical signalling pathways for conducted vasodilatation along endothelium of hamster feed arteries. J Physiol. 2007;579(Pt 1):175–186. doi:10.1113/jphysiol.2006.124529
  • Dora KA, Lin J, Borysova L, et al. Signaling and structures underpinning conducted vasodilation in human and porcine intramyocardial coronary arteries. Front Cardiovasc Med. 2022;9:980628. doi:10.3389/fcvm.2022.980628
  • Asagami T, Abbasi F, Stuelinger M, et al. Metformin treatment lowers asymmetric dimethylarginine concentrations in patients with type 2 diabetes. Metabolism. 2002;51(7):843–846. doi:10.1053/meta.2002.33349
  • Tsai CM, Kuo HC. Hsu et al Metformin reduces asymmetric dimethylarginine and prevents hypertension in spontaneously hypertensive rats. Transl Res. 2014;164(6):452–459. doi:10.1016/j.trsl.2014.07.005
  • Takahashi N, Shibata R, Ouchi N, et al. Metformin stimulates ischemia-induced revascularization through an eNOS dependent pathway in the ischemic hindlimb mice model. J Vasc Surg. 2015;61(2):489–496. doi:10.1016/j.jvs.2013.09.061
  • Ding Y, Zhou Y, Ling P, et al. Metformin in cardiovascular diabetology: a focused review of its impact on endothelial function. Theranostics. 2021;11(19):9376–9396. doi:10.7150/thno.64706
  • Triposkiadis F, Xanthopoulos A, Parissis J, et al. Pathogenesis of chronic heart failure: cardiovascular aging, risk factors, comorbidities, and disease modifiers. Heart Fail Rev. 2022;27:337–344. doi:10.1007/s10741-020-09987-z
  • Haghbin H, Gangwani MK, Ravi SJK, et al. Nonalcoholic fatty liver disease and atrial fibrillation: possible pathophysiological links and therapeutic interventions. Ann Gastroenterol. 2020;33(6):603–614. doi:10.20524/aog.2020.0550
  • Kim HS, Ren G, Kim T, et al. Metformin reduces saturated fatty acid-induced lipid accumulation and inflammatory response by restoration of autophagic flux in endothelial cells. Sci Rep. 2020;10:13523. doi:10.1038/s41598-020-70347-w
  • Kim JA, Montagnani M, Chandrasekran S, Quon MJ. Role of lipotoxicity in endothelial dysfunction. Heart Fail Clin. 2012;8(4):589–607. doi:10.1016/j.hfc.2012.06.012
  • Lee TI, Kao YH, Chen YC, et al. Cardiac metabolism, inflammation, and peroxisome proliferator-activated receptors modulated by 1,25-dihydroxyvitamin D3 in diabetic rats. Int J Cardiol. 2014;176(1):151–157. doi:10.1016/j.diabres.2013.01.008
  • Mellbin LG, Malmberg K, Norhammar A, et al. The impact of glucose lowering treatment on long-term prognosis in patients with type 2 diabetes and myocardial infarction: a report from the DIGAMI 2 trial. Eur Heart J. 2008;29(2):166–176. doi:10.1093/eurheartj/ehm518
  • Kluge MA, Fetterman JL, Vita JA. Mitochondria and endothelial function. Circ Res. 2013;112(8):1171–1188. doi:10.1161/CIRCRESAHA.111.300233
  • Li C, Reif MM, Craige SM, et al. Endothelial AMPK activation induces mitochondrial biogenesis and stress adaptation via eNOS-dependent mTORC1 signaling. Nitric Oxide. 2016;55-56:45–53. doi:10.1016/j.niox.2016.03.003
  • Halling JF, Pilegaard H. PGC-1α-mediated regulation of mitochondrial function and physiological implications. Appl Physiol Nutr Metab. 2020;45(9):927–936. doi:10.1139/apnm-2020-0005
  • Khan AA, Thomas GN, Lip GYH, Shantsila A. Endothelial function in patients with atrial fibrillation. Ann Med. 2020;52(1–2):1–11. doi:10.1080/07853890.2019.1711158
  • Freedman JE, Loscalzo J, Barnard MR, et al. Nitric oxide released from activated platelets inhibits platelet recruitment. J Clin Invest. 1997;100(2):350–356. doi:10.1172/JCI119540
  • Endemann DH, Schiffrin EL. Endothelial dysfunction. J Am Soc Nephrol. 2004;15(8):1983–1992. doi:10.1097/01.ASN.0000132474.50966.DA
  • Cai H, Li Z, Goette A, et al. Downregulation of endocardial nitric oxide synthase expression and nitric oxide production in atrial fibrillation: potential mechanisms for atrial thrombosis and stroke. Circulation. 2002;106(22):2854–2858. doi:10.1161/01.cir.0000039327.11661.16
  • Ersoy C, Kiyici S, Budak F, et al. The effect of metformin treatment on VEGF and PAI-1 levels in obese type 2 diabetic patients. Diabet Res Clin Pract. 2008;81(1):56–60. doi:10.1016/j.diabres.2008.02.006
  • Carnes CA, Chung MK. Nakayama T, et al Ascorbate attenuates atrial pacing-induced peroxynitrite formation and electrical remodeling and decreases the incidence of postoperative atrial fibrillation. Circ Res. 2001;89(6):E32–8. doi:10.1161/hh1801.097644
  • Lip GY, Blann A. von Willebrand factor: a marker of endothelial dysfunction in vascular disorders? Cardiovasc Res. 1997;34(2):255–265. doi:10.1016/s0008-6363(97)00039-4
  • Conway DS, Pearce LA, Chin BS, et al. Prognostic value of plasma von Willebrand factor and soluble P-selectin as indices of endothelial damage and platelet activation in 994 patients with nonvalvular atrial fibrillation. Circulation. 2003;107(25):3141–3145. doi:10.1161/01.CIR.0000077912.12202.FC
  • Spiel AO, Gilbert JC, Jilma B. von Willebrand factor in cardiovascular disease: focus on acute coronary syndromes. Circulation. 2008;117(11):1449–1459. doi:10.1161/CIRCULATIONAHA.107.722827
  • Bell DSH, Goncalves E. Stroke in the patient with diabetes (Part 2) – prevention and the effects of glucose lowering therapies. Diabet Res Clin Pract. 2020;164. doi:10.1016/j.diabres.2020.108199
  • Saez JC, Berthoud VM, Branes MC, et al. Plasma membrane channels formed by connexins: their regulation and functions. Physiol Rev. 2003;83(4):1359–1400. doi:10.1152/physrev.00007.2003
  • Rodríguez-Sinovas A, Sánchez JA, Valls-Lacalle L, et al. Connexins in the Heart: regulation, Function and Involvement in Cardiac Disease. Int J Mol Sci. 2021;22(9):4413. doi:10.3390/ijms22094413
  • Kelm NQ, Solinger JC, Piell KM, Cole MP. Conjugated Linoleic Acid-Mediated Connexin-43 Remodeling and Sudden Arrhythmic Death in Myocardial Infarction. Int J Mol Sci. 2023;24(13):11208. doi:10.3390/ijms241311208
  • Severs NJ, Dupont E, Coppen SR, et al. Remodelling of gap junctions and connexin expression in heart disease. Biochim Biophys Acta. 2004;1662(1–2):138–148. doi:10.1016/j.bbamem.2003.10.019
  • Solan JL, Lampe PD. Specific Cx43 phosphorylation events regulate gap junction turnover in vivo. FEBS Lett. 2014;588(8):1423–1429. doi:10.1016/j.febslet.2014.01.049
  • Liu D, He J, Zhou D, et al. Connexin43 Overexpression Exacerbates Myocardial Ischemic Reperfusion Injury in Diabetes via Modulating Cardiac Autophagy. FASEB J. 2022;36(S1):7849. doi:10.1096/fasebj.2022.36.S1.L7849
  • Ek-Vitorín JF, Pontifex TK, Burt JM. Cx43 Channel Gating and Permeation: multiple Phosphorylation-Dependent Roles of the Carboxyl Terminus. Int J Mol Sci. 2018;19(6):1659. doi:10.3390/ijms19061659
  • Remo BF, Qu J, Volpicelli FM, et al. Phosphatase-resistant gap junctions inhibit pathological remodeling and prevent arrhythmias. Circ Res. 2011;108(12):1459–1466. doi:10.1161/CIRCRESAHA.111.244046
  • Ozcan C, Battaglia E, Young R, et al. LKB1 knockout mouse develops spontaneous atrial fibrillation and provides mechanistic insights into human disease process. J Am Heart Assoc. 2015;4(3):e001733. doi:10.1161/JAHA.114.001733
  • Ozcan C, Li Z, Kim G, et al. Molecular Mechanism of the Association Between Atrial Fibrillation and Heart Failure Includes Energy Metabolic Dysregulation Due to Mitochondrial Dysfunction. J Card Fail. 2019;25(11):911–920. doi:10.1016/j.cardfail.2019.08.005
  • Ozcan C, Dixit G, Li Z. Activation of AMP-Activated Protein Kinases Prevents Atrial Fibrillation. J Cardiovasc Transl Res. 2021;14(3):492–502. doi:10.1007/s12265-020-10069-6
  • Akoyev V, Takemoto DJ. ZO-1 is required for protein kinase C gamma-driven disassembly of connexin 43. Cell Signal. 2007;19(5):958–967. doi:10.1016/j.cellsig.2006.11.007
  • Wagner LM, Saleh SM, Boyle DJ, et al. Effect of protein kinase Cgamma on gap junction disassembly in lens epithelial cells and retinal cells in culture. Mol Vis. 2002;8:59–66.
  • Gong Y, Wang C, Jiang Y, et al. Metformin Inhibits Tumor Metastasis through Suppressing Hsp90α Secretion in an AMPKα1-PKCγ Dependent Manner. Cells. 2020;9(1):144. doi:10.3390/cells9010144
  • Rhett JM, Ongstad EL, Jourdan J, et al. Cx43 Associates with Nav1.5 in the Cardiomyocyte Perinexus. J Membr Biol. 2012;245(7):411–422. doi:10.1007/s00232-012-9465-z
  • Kim GE, Ross JL, Xie C, et al. LKB1 deletion causes early changes in atrial channel expression and electrophysiology prior to atrial fibrillation. Cardiovasc Res. 2015;108(1):197–208. doi:10.1093/cvr/cvv212
  • Molaei A, Molaei E, Sadeghnia H, et al. LKB1: an emerging therapeutic target for cardiovascular diseases. Life Sci. 2022;306:120844. doi:10.1016/j.lfs.2022.120844
  • Ndembe G, Intini I, Perin E, et al. LKB1: can We Target an Hidden Target? Focus on NSCLC. Front Oncol. 2022;12:889826. doi:10.3389/fonc.2022.889826
  • Pool L, Wijdeveld LFJM, de Groot F, et al. The Role of Mitochondrial Dysfunction in Atrial Fibrillation: translation to Druggable Target and Biomarker Discovery. Int J Mol Sci. 2021;22(16):8463. doi:10.3390/ijms22168463
  • Chen Q, Thompson J, Hu Y, Lesnefsky EJ. Chronic metformin treatment decreases cardiac injury during ischemia-reperfusion by attenuating endoplasmic reticulum stress with improved mitochondrial function. Aging. 2021;13(6):7828–7845. doi:10.18632/aging.202858
  • Sun D, Yang F. Metformin improves cardiac function in mice with heart failure after myocardial infarction by regulating mitochondrial energy metabolism. Biochem Biophys Res Commun. 2017;486(2):329–335. doi:10.1016/j.bbrc.2017.03.036
  • Larsen AH, Jessen N, Nørrelund H, et al. A randomised, double-blind, placebo-controlled trial of metformin on myocardial efficiency in insulin-resistant chronic heart failure patients without diabetes. Eur J Heart Fail. 2020;22(9):1628–1637. doi:10.1002/ejhf.1656
  • Han Y, Xie H, Liu Y, et al. Effect of metformin on all-cause and cardiovascular mortality in patients with coronary artery diseases: a systematic review and an updated meta-analysis. Cardiovasc Diabetol. 2019;18:96. doi:10.1186/s12933-019-0900-7
  • Karnewar S, Neeli PK, Panuganti D, et al. Metformin regulates mitochondrial biogenesis and senescence through AMPK mediated H3K79 methylation: relevance in age-associated vascular dysfunction. Biochim Biophys Acta Mol Basis Dis. 2018;1864(4 Pt A):1115–1128. doi:10.1016/j.bbadis.2018.01.018
  • de Marañón AM, Díaz-Pozo P, Canet F, et al. Metformin modulates mitochondrial function and mitophagy in peripheral blood mononuclear cells from type 2 diabetic patients. Redox Biol. 2022;53:102342. doi:10.1016/j.redox.2022.102342
  • Aatsinki SM, Buler M, Salomäki H, et al. Metformin induces PGC-1α expression and selectively affects hepatic PGC-1α functions. Br J Pharmacol. 2014;171(9):2351–2363. doi:10.1111/bph.12585
  • Targher G, Byrne CD, Tilg H. NAFLD and increased risk of cardiovascular disease: clinical associations, pathophysiological mechanisms and pharmacological implications. Gut. 2020;69(9):1691–1705. doi:10.1136/gutjnl-2020-320622
  • Bai F, Liu Y, Tu T, et al. Metformin regulates lipid metabolism in a canine model of atrial fibrillation through AMPK/PPAR-α/VLCAD pathway. Lipids Health Dis. 2019;18(1):1–9. doi:10.1186/s12944-019-1059-7
  • Zhao W, Zhou L, Novák P, et al. Metabolic Dysfunction in the Regulation of the NLRP3 Inflammasome Activation: a Potential Target for Diabetic Nephropathy. J Diabetes Res. 2022;2022:2193768. doi:10.1155/2022/2193768
  • Yao C, Veleva T, Scott L, et al. Enhanced Cardiomyocyte NLRP3 Inflammasome Signaling Promotes Atrial Fibrillation. Circulation. 2018;138(20):2227–2242. doi:10.1161/CIRCULATIONAHA.118.035202
  • Yang F, Qin Y, Wang Y, et al. Metformin Inhibits the NLRP3 Inflammasome via AMPK/mTOR-dependent Effects in Diabetic Cardiomyopathy. Int J Biol Sci. 2019;15(5):1010–1019. doi:10.7150/ijbs.29680
  • Russo I, Frangogiannis NG. Diabetes-associated cardiac fibrosis: cellular effectors, molecular mechanisms and therapeutic opportunities. J Mol Cell Cardiol. 2016;90:84–93. doi:10.1016/j.yjmcc.2015.12.011
  • Zhang Q, Liu T, Ng CY, et al. Diabetes mellitus and atrial remodeling: mechanisms and potential upstream therapies. Cardiovasc Ther. 2014;32(5):233–241. doi:10.1111/1755-5922.12089
  • Jansen HJ, Bohne LJ, Gillis AM, Rose RA. Atrial remodeling and atrial fibrillation in acquired forms of cardiovascular disease. Heart Rhythm O2. 2020;1(2):147–159. doi:10.1016/j.hroo.2020.05.002
  • Yildiz M, Lavie CJ, Morin DP, et al. The complex interplay between diabetes mellitus and atrial fibrillation. Expert Rev Cardiovasc Ther. 2022;20(9):707–717. doi:10.1080/14779072.2022.2115357
  • Ozturk N, Uslu S, Ozdemir S. Diabetes-induced changes in cardiac voltage-gated ion channels. World J Diabetes. 2021;12(1):1–18. doi:10.4239/wjd.v12.i1.1
  • Liu CH, Hua N, Fu X, et al. Metformin regulates atrial SK2 and SK3 expression through inhibiting the PKC/ERK signaling pathway in type 2 diabetic rats. BMC Cardiovasc Disord. 2018;18(1):236. doi:10.1186/s12872-018-0950-x
  • Liu C, Hua N, Fu X, et al. Metformin Regulates the Expression of SK2 and SK3 in the Atria of Rats With Type 2 Diabetes Mellitus Through the NOX4/p38MAPK Signaling Pathway. J Cardiovasc Pharmacol. 2018;72(5):205–213. doi:10.1097/FJC.0000000000000615
  • Jichitu A, Bungau S, Stanescu AMA, et al. Non-Alcoholic Fatty Liver Disease and Cardiovascular Comorbidities: pathophysiological Links, Diagnosis, and Therapeutic Management. Diagnostics. 2021;1(4):689. doi:10.3390/diagnostics11040689
  • Saddik M, Lopaschuk GD. Myocardial triglyceride turnover and contribution to energy substrate utilization in isolated working rat hearts. J Biol Chem. 1991;266(13):8162–8170.
  • Wisneski JA, Stanley WC, Neese RA, et al. Effects of acute hyperglycemia on myocardial glycolytic activity in humans. J Clin Invest. 1990;85(5):1648–1656. doi:10.1172/JCI114616
  • Lopaschuk GD, Ussher JR, Folmes CD, et al. Myocardial fatty acid metabolism in health and disease. Physiol Rev. 2010;90(1):207–258. doi:10.1152/physrev.00015.2009
  • Houten SM, Wanders RJ. A general introduction to the biochemistry of mitochondrial fatty acid β-oxidation. J Inherit Metab Dis. 2010;33(5):469–477. doi:10.1007/s10545-010-9061-2
  • Greenwell AA, Gopal K, Ussher JR. Myocardial Energy Metabolism in Non-ischemic Cardiomyopathy. Front Physiol. 2020;11:570421. doi:10.3389/fphys.2020.570421
  • Cotter DG, Schugar RC, Crawford PA. Ketone body metabolism and cardiovascular disease. Am J Physiol Heart Circ Physiol. 2013;304(8):H1060–1076. doi:10.1152/ajpheart.00646.2012
  • Ho KL, Zhang L, Wagg C, et al. Increased ketone body oxidation provides additional energy for the failing heart without improving cardiac efficiency. Cardiovasc Res. 2019;115(11):1606–1616. doi:10.1093/cvr/cvz045
  • Schugar RC, Moll AR. André d’Avignon D, et al Cardiomyocyte-specific deficiency of ketone body metabolism promotes accelerated pathological remodeling. Mol Metab. 2014;3(7):754–769. doi:10.1016/j.molmet.2014.07.010
  • Barth AS, Merk S, Arnoldi E, et al. Reprogramming of the human atrial transcriptome in permanent atrial fibrillation: expression of a ventricular-like genomic signature. Circ Res. 2005;96(9):1022–1029. doi:10.1161/01.RES.0000165480.82737.33
  • Shingu Y, Yokota T, Takada S, et al. Decreased gene expression of fatty acid binding protein 3 in the atrium of patients with new onset of atrial fibrillation in cardiac perioperative phase. J Cardiol. 2018;71(1):65–70. doi:10.1016/j.jjcc.2017.07.003
  • Shingu Y, Takada S, Yokota T, et al. Correlation between increased atrial expression of genes related to fatty acid metabolism and autophagy in patients with chronic atrial fibrillation. PLoS One. 2020;15(4):e0224713. doi:10.1371/journal.pone.0224713
  • Khawaja O, Bartz TM, Ix JH, et al. Plasma free fatty acids and risk of atrial fibrillation (from the Cardiovascular Health Study). Am J Cardiol. 2012;110(2):212–216. doi:10.1016/j.amjcard.2012.03.010
  • Hansen PS, Clarke RJ, Buhagiar KA, et al. Alloxan-induced diabetes reduces sarcolemmal Na+-K+ pump function in rabbit ventricular myocytes. Am J Physiol Cell Physiol. 2007;292(3):C1070–7. doi:10.1152/ajpcell.00288.2006
  • Barth AS, Tomaselli GF. Cardiac metabolism and arrhythmias. Circ Arrhythm Electrophysiol. 2009;2(3):327–335. doi:10.1161/CIRCEP.108.817320
  • Bueno-Orovio A, Sánchez C, Pueyo E, Rodriguez B. Na/K pump regulation of cardiac repolarization: insights from a systems biology approach. Pflugers Arch. 2014;466(2):183–193. doi:10.1007/s00424-013-1293-1
  • Lenski M, Schleider G, Kohlhaas M, et al. Arrhythmia causes lipid accumulation and reduced glucose uptake. Basic Res Cardiol. 2015;110(4):40. doi:10.1007/s00395-015
  • Dai DF, Chen T, Johnson SC, et al. Cardiac aging: from molecular mechanisms to significance in human health and disease. Antioxid Redox Signal. 2012;16(12):1492–1526. doi:10.1089/ars.2011.4179
  • van Rosendael AR, Dimitriu-Leen AC, van Rosendael PJ, et al. Association Between Posterior Left Atrial Adipose Tissue Mass and Atrial Fibrillation. Circ Arrhythm Electrophysiol. 2017;10(2):e004614. doi:10.1161/CIRCEP.116.004614
  • Sutanto H, Lyon A, Lumens J, et al. Cardiomyocyte calcium handling in health and disease: insights from in vitro and in silico studies. Prog Biophys Mol Biol. 2020;157:54–75. doi:10.1016/j.pbiomolbio.2020.02.008
  • Liu GZ, Hou TT, Yuan Y, et al. Fenofibrate inhibits atrial metabolic remodelling in atrial fibrillation through PPAR-α/sirtuin 1/PGC-1α pathway. Br J Pharmacol. 2016;173(6):1095–1109. doi:10.1111/bph.13438
  • Ludhwani D, Wieters JS. Paroxysmal Atrial Fibrillation; 2022. Available from: https://www.ncbi.nlm.nih.gov/books/NBK535439/. Accessed June 10, 2024.
  • Liu Y, Bai F, Liu N, et al. The Warburg effect: a new insight into atrial fibrillation. Clin Chim Acta. 2019;499:4–12. doi:10.1016/j.cca.2019.08.029
  • Hiraoka M, Okamoto Y, Sano T. Electrophysiological effects of lactates in mammalian ventricular tissues. J Electrocardiol. 1981;14(1):13–20. doi:10.1016/s0022-0736(81)80023-4
  • Saman S, Opie LH. Mechanism of reduction of action potential duration of ventricular myocardium by exogenous lactate. J Mol Cell Cardiol. 1984;16(7):659–662. doi:10.1016/s0022-2828(84)80629-x
  • Wu P, Zhu T, Huang Y, et al. Current understanding of the contribution of lactate to the cardiovascular system and its therapeutic relevance. Front Endocrinol (Lausanne). 2023;14:1205442. doi:10.3389/fendo.2023.1205442
  • Jeon SM, Chandel NS, Hay N. AMPK regulates NADPH homeostasis to promote tumour cell survival during energy stress. Nature. 2012;485(7400):661–665. doi:10.1038/nature11066
  • Muzurović EM, Vujošević S, Mikhailidis DP. Can We Decrease Epicardial and Pericardial Fat in Patients With Diabetes? J Cardiovasc Pharmacol Ther. 2021;26(5):415–436. doi:10.1177/10742484211006997
  • Su JR, Lu ZH, Su Y, et al. Relationship of Serum Adiponectin Levels and Metformin Therapy in Patients with Type 2 Diabetes. Horm Metab Res. 2016;48(2):92–98. doi:10.1055/s-0035-1569287
  • Macheret F, Bartz TM, Djousse L, et al. Higher circulating adiponectin levels are associated with increased risk of atrial fibrillation in older adults. Heart. 2015;101(17):1368–1374. doi:10.1136/heartjnl-2014-307015
  • El Messaoudi S, Nederlof R, Zuurbier CJ, et al. Effect of metformin pretreatment on myocardial injury during coronary artery bypass surgery in patients without diabetes (MetCAB): a double-blind, randomised controlled trial. Lancet Diabetes Endocrinol. 2015;2(8):615–623. doi:10.1016/S2213-8587(15)00121-7