235
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

The Role of Palmitic Acid in the Co-Toxicity of Bacterial Metabolites to Endothelial Cells

, , , , &
Pages 399-409 | Received 17 Feb 2023, Accepted 18 May 2023, Published online: 04 Jul 2023

References

  • Cani PD, Amar J, Iglesias MA, et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007;56(7):1761–1772. doi:10.2337/db06-1491
  • Mohammad S, Thiemermann C. Role of metabolic endotoxemia in systemic inflammation and potential interventions. Front Immunol. 2021;11:1–16. doi:10.3389/fimmu.2020.594150
  • Brown BI. Nutritional management of metabolic endotoxemia: a clinical review. Altern Ther Health Med. 2017;23(4):42–54.
  • André P, Laugerette F, Féart C. Metabolic endotoxemia: a potential underlying mechanism of the relationship between dietary fat intake and risk for cognitive impairments in humans? Nutrients. 2019;11(8):1887. doi:10.3390/nu11081887
  • Ghoshal S, Witta J, Zhong J, de Villiers W, Eckhardt E. Chylomicrons promote intestinal absorption of lipopolysaccharides. J Lipid Res. 2009;50(1):90–97. doi:10.1194/jlr.M800156-JLR200
  • Neves AL, Coelho J, Couto L, Leite-Moreira A, Roncon-Albuquerque R. Metabolic endotoxemia: a molecular link between obesity and cardiovascular risk. J Mol Endocrinol. 2013;51(2):R51–R64. doi:10.1530/JME-13-0079
  • Vors C, Pineau G, Drai J, et al. Postprandial endotoxemia linked with chylomicrons and lipopolysaccharides handling in obese versus lean men: a lipid dose-effect trial. J Clin Endocrinol Metab. 2015;100(9):3427–3435. doi:10.1210/jc.2015-2518
  • Fasano A. Gut permeability, obesity, and metabolic disorders: who is the chicken and who is the egg? Am J Clin Nutr. 2017;105(1):3–4. doi:10.3945/ajcn.116.148338
  • Carta G, Murru E, Banni S, Manca C. Palmitic acid: physiological role, metabolism and nutritional implications. Front Physiol. 2017;8:1–14. doi:10.3389/fphys.2017.00902
  • Korbecki J, Bajdak-Rusinek K. The effect of palmitic acid on inflammatory response in macrophages: an overview of molecular mechanisms. Inflamm Res. 2019;68(11):915–932. doi:10.1007/s00011-019-01273-5
  • Sanadgol N, Mostafaie A, Mansouri K, Bahrami G. Effect of palmitic acid and linoleic acid on expression of ICAM-1 and VCAM-1 in human bone marrow endothelial cells (HBMECs). Arch Med Sci. 2012;8(2):192–198. doi:10.5114/aoms.2012.28544
  • Pillon NJ, Azizi PM, Li YE, et al. Palmitate-induced inflammatory pathways in human adipose microvascular endothelial cells promote monocyte adhesion and impair insulin transcytosis. Am J Physiol Endocrinol Metab. 2015;309(1):E35–E44. doi:10.1152/ajpendo.00611.2014
  • Gu YY, Tan XH, Song WP, et al. Icariside II attenuates palmitic acid-induced endothelial dysfunction through SRPK1-Akt-eNOS signaling pathway. Front Pharmacol. 2022;13:1–12. doi:10.3389/fphar.2022.920601
  • Chen P, Liu H, Xiang H, et al. Palmitic acid-induced autophagy increases reactive oxygen species via the Ca2+/PKCα/NOX4 pathway and impairs endothelial function in human umbilical vein endothelial cells. Exp Ther Med. 2019:2425–2432. doi:10.3892/etm.2019.7269
  • Choroszy M, Litwinowicz K, Łaczmanski Ł, Roleder T, Sobieszczanska B. Co-toxicity of bacterial metabolites, to vascular endothelial cells in coronary arterial disease accompanied by gut dysbiosis. Nutrients. 2022;14:424. doi:10.3390/nu14030424
  • Togo M, Konari N, Tsukamoto M, et al. Effects of a high-fat diet on superoxide anion generation and membrane fluidity in liver mitochondria in rats. J Int Soc Sports Nutr. 2018;15(1):1–8. doi:10.1186/s12970-018-0217-z
  • Dow CA, Stauffer BL, Greiner JJ, DeSouza CA. Influence of habitual high dietary fat intake on endothelium-dependent vasodilation. Appl Physiol Nutr Metab. 2015;40(7):711–715. doi:10.1139/apnm-2015-0006
  • Sena CM, Leandro A, Azul L, Seiça R, Perry G. Vascular oxidative stress: impact and therapeutic approaches. Front Physiol. 2018;9:1–11. doi:10.3389/fphys.2018.01668
  • Incalza MA, D’Oria R, Natalicchio A, Perrini S, Laviola L, Giorgino F. Oxidative stress and reactive oxygen species in endothelial dysfunction associated with cardiovascular and metabolic diseases. Vascul Pharmacol. 2018;100:1–19. doi:10.1016/J.VPH.2017.05.005
  • Sakurada R, Odagiri K, Hakamata A, Kamiya C, Wei J, Watanabe H. Calcium release from endoplasmic reticulum involves calmodulin-mediated NADPH oxidase-derived reactive oxygen species production in endothelial cells. Int J Mol Sci. 2019;20(7):1644. doi:10.3390/ijms20071644
  • Scioli MG, Storti G, D’amico F, et al. Oxidative stress and new pathogenetic mechanisms in endothelial dysfunction: potential diagnostic biomarkers and therapeutic targets. J Clin Med. 2020;9(6):1–39. doi:10.3390/jcm9061995
  • Zhu Q, Dong Q, Wang X, et al. Palmitic acid, a critical metabolite, aggravates cellular senescence through reactive oxygen species generation in Kawasaki disease. Front Pharmacol. 2022;13:1–14. doi:10.3389/fphar.2022.809157
  • Kim JE, Song SE, Kim YW, et al. Adiponectin inhibits palmitate-induced apoptosis through suppression of reactive oxygen species in endothelial cells: involvement of cAMP/protein kinase A and AMP-activated protein kinase. J Endocrinol. 2010;207(1):35–44. doi:10.1677/JOE-10-0093
  • Zhou X, Yang J, Zhou M, et al. Resveratrol attenuates endothelial oxidative injury by inducing autophagy via the activation of transcription factor EB. Nutr Metab. 2019;16(1):1–12. doi:10.1186/s12986-019-0371-6
  • Li W, Yang X, Zheng T, et al. TNF-α stimulates endothelial palmitic acid transcytosis and promotes insulin resistance. Sci Rep. 2017;7:1–18. doi:10.1038/srep44659
  • Lu Z, Li Y, Ru JH, Lopes-Virella MF, Lyons TJ, Huang Y. Interaction of palmitate and LPS regulates cytokine expression and apoptosis through sphingolipids in human retinal microvascular endothelial cells. Exp Eye Res. 2019;178:61–71. doi:10.1016/j.exer.2018.09.016
  • Park WJ, Han JS. Gryllus bimaculatus extract protects against lipopolysaccharide and palmitate-induced production of proinflammatory cytokines and inflammasome formation. Mol Med Rep. 2021;23(3):1–10. doi:10.3892/mmr.2021.11845
  • Dauphinee SM, Karsan A. Lipopolysaccharide signaling in endothelial cells. Lab Invest. 2006;86(1):9–22. doi:10.1038/labinvest.3700366
  • Park HS, Chun JN, Jung HY, Choi C, Bae YS. Role of NADPH oxidase 4 in lipopolysaccharide-induced proinflammatory responses by human aortic endothelial cells. Cardiovasc Res. 2006;72(3):447–455. doi:10.1016/j.cardiores.2006.09.012
  • Montezano AC, Touyz RM. Reactive oxygen species and endothelial function - role of nitric oxide synthase uncoupling and Nox family nicotinamide adenine dinucleotide phosphate oxidases. Basic Clin Pharmacol Toxicol. 2012;110(1):87–94. doi:10.1111/j.1742-7843.2011.00785.x
  • Duarte S, Arango D, Parihar A, Hamel P, Yasmeen R, Doseff AI. Apigenin protects endothelial cells from lipopolysaccharide (LPS)-induced inflammation by decreasing caspase-3 activation and modulating mitochondrial function. Int J Mol Sci. 2013;14(9):17664–17679. doi:10.3390/ijms140917664
  • Dou L, Jourde-Chiche N, Faure V, et al. The uremic solute indoxyl sulfate induces oxidative stress in endothelial cells. J Thromb Haemost. 2007;5(6):1302–1308. doi:10.1111/j.1538-7836.2007.02540.x
  • Yu M, Kim YJ, Kang D-H. Indoxyl sulfate-induced endothelial dysfunction in patients with chronic kidney disease via induction of oxidative stress. Clin J Am Soc Nephrol. 2011;6(1):30–39. doi:10.2215/CJN.05340610
  • Förstermann U, Sessa WC. Nitric oxide synthases: regulation and function. Eur Heart J. 2012;33(7):829–837. doi:10.1093/eurheartj/ehr304
  • Connelly L, Madhani M, Hobbs AJ. Resistance to endotoxic shock in endothelial nitric-oxide synthase (eNOS) knock-out mice: a pro-inflammatory role for eNOS-derived no in vivo. J Biol Chem. 2005;280(11):10040–10046. doi:10.1074/jbc.M411991200
  • Matsumoto T, Takayanagi K, Kojima M, Taguchi K, Kobayashi T. Acute exposure to indoxyl sulfate impairs endothelium-dependent vasorelaxation in rat aorta. Int J Mol Sci. 2019;20(2). doi:10.3390/ijms20020338
  • Tumur Z, Niwa T. Indoxyl sulfate inhibits nitric oxide production and cell viability by inducing oxidative stress in vascular endothelial cells. Am J Nephrol. 2009;29(6):551–557. doi:10.1159/000191468
  • Kharait S, Haddad DJ, Springer ML. Nitric oxide counters the inhibitory effects of uremic toxin indoxyl sulfate on endothelial cells by governing ERK MAP kinase and myosin light chain activation. Biochem Biophys Res Commun. 2011;409(4):758–763. doi:10.1016/j.bbrc.2011.05.084
  • Kim F, Tysseling KA, Rice J, et al. Free fatty acid impairment of nitric oxide production in endothelial cells is mediated by IKKbeta. Arterioscler Thromb Vasc Biol. 2005;25(5):989–994. doi:10.1161/01.ATV.0000160549.60980.a8
  • Suzuki K, Susaki EA, Nagaoka I. Lipopolysaccharides and cellular senescence: involvement in atherosclerosis. Int J Mol Sci. 2022;23(19):11148. doi:10.3390/ijms231911148
  • Kar S, Kavdia M. Endothelial NO and O2− production rates differentially regulate oxidative, nitroxidative, and nitrosative stress in the microcirculation. Free Radic Biol Med. 2013;63:161–174. doi:10.1016/j.freeradbiomed.2013.04.024
  • Kong DH, Kim YK, Kim MR, Jang JH, Lee S. Emerging roles of vascular cell adhesion molecule-1 (VCAM-1) in immunological disorders and cancer. Int J Mol Sci. 2018;19(4):13–17. doi:10.3390/ijms19041057
  • Wittchen ES. Endothelial signaling in paracellular and transcellular leukocyte transmigration. Front Biosci. 2009;14(7):2522–2545. doi:10.2741/3395
  • Dayang EZ, Plantinga J, Ter Ellen B, Van Meurs M, Molema G, Moser J. Identification of LPS-activated endothelial subpopulations with distinct inflammatory phenotypes and regulatory signaling mechanisms. Front Immunol. 2019;10:1–12. doi:10.3389/fimmu.2019.01169
  • Wong D, Dorovini-Zis K. Regulation by cytokines and lipopolysaccharide of E-selectin expression by human brain microvessel endothelial cells in primary culture. J Neuropathol Exp Neurol. 1996;55(2):225–235. doi:10.1097/00005072-199602000-00011
  • Fratantonio D, Speciale A, Ferrari D, Cristani M, Saija A, Cimino F. Palmitate-induced endothelial dysfunction is attenuated by cyanidin-3-O-glucoside through modulation of Nrf2/Bach1 and NF-κB pathways. Toxicol Lett. 2015;239(3):152–160. doi:10.1016/j.toxlet.2015.09.020
  • Ito S, Osaka M, Higuchi Y, Nishijima F, Ishii H, Yoshida M. Indoxyl sulfate induces leukocyte-endothelial interactions through up-regulation of E-selectin. J Biol Chem. 2010;285(50):38869–38875. doi:10.1074/JBC.M110.166686
  • Lee CT, Lee YT, Ng HY, et al. Lack of modulatory effect of simvastatin on indoxyl sulfate-induced activation of cultured endothelial cells. Life Sci. 2012;90(1–2):47–53. doi:10.1016/j.lfs.2011.10.014
  • Matsumoto T, Kojima M, Takayanagi K, Taguchi K, Kobayashi T. Role of s-equol, indoxyl sulfate, and trimethylamine n-oxide on vascular function. Am J Hypertens. 2020;33(9):793–803. doi:10.1093/ajh/hpaa053
  • Cong X, Kong W. Endothelial tight junctions and their regulatory signaling pathways in vascular homeostasis and disease. Cell Signal. 2020;66:109485. doi:10.1016/j.cellsig.2019.109485
  • Higashi Y, Sukhanov S, Shai SY, et al. Endothelial deficiency of insulin-like growth factor-1 receptor reduces endothelial barrier function and promotes atherosclerosis in apoe-deficient mice. Am J Physiol Heart Circ Physiol. 2020;318(5):H730–H743. doi:10.1152/AJPHEART.00064.2020
  • Gorzelak-Pabiś P, Wozniak E, Wojdan K, Chalubinski M, Broncel M. Single triglyceride-rich meal destabilizes barrier functions and initiates inflammatory processes of endothelial cells. J Interferon Cytokine Res. 2020;40(1):43–53. doi:10.1089/jir.2018.0173
  • Wang L, Chen Y, Li X, Zhang Y, Gulbins E, Zhang Y. Enhancement of endothelial permeability by free fatty acid through lysosomal cathepsin B-mediated Nlrp3 inflammasome activation. Oncotarget. 2016;7(45):73229–73241. doi:10.18632/oncotarget.12302
  • Assefa EG, Yan Q, Gezahegn SB, et al. Role of resveratrol on indoxyl sulfate-induced endothelial hyperpermeability via aryl hydrocarbon receptor (AHR)/Src-dependent pathway. Oxid Med Cell Longev. 2019;2019:1–15. doi:10.1155/2019/5847040
  • Petrache I, Birukova A, Ramirez SI, Garcia JGN, Verin AD. The role of the microtubules in tumor necrosis factor-α-induced endothelial cell permeability. Am J Respir Cell Mol Biol. 2003;28(5):574–581. doi:10.1165/rcmb.2002-0075OC
  • Prasain N, Stevens T. The actin cytoskeleton in endothelial cell phenotypes. Microvasc Res. 2009;77(1):53–63. doi:10.1016/j.mvr.2008.09.012
  • Kubra K-T, Barabutis N. Brefeldin A and kifunensine modulate LPS-induced lung endothelial hyperpermeability in human and bovine cells. Am J Physiol Cell Physiol. 2021;321(2):C214–C220. doi:10.1152/ajpcell.00142.2021
  • Okamoto T, Kawamoto E, Usuda H, et al. Recombinant human soluble thrombomodulin suppresses monocyte adhesion by reducing lipopolysaccharide-induced endothelial cellular stiffening. Cells. 2020;9(8):1–16. doi:10.3390/cells9081811
  • Kása A, Csortos C, Verin AD. Cytoskeletal mechanisms regulating vascular endothelial barrier function in response to acute lung injury. Tissue Barriers. 2015;3(1):1–2. doi:10.4161/21688370.2014.974448
  • Sen PY, Lin YT, Chen Y, Hung KY, Wang SM. Effects of indoxyl sulfate on adherens junctions of endothelial cells and the underlying signaling mechanism. J Cell Biochem. 2012;113(3):1034–1043. doi:10.1002/jcb.23435
  • Kotlyarov S, Kotlyarova A. Involvement of fatty acids and their metabolites in the development of inflammation in atherosclerosis. Int J Mol Sci. 2022;23(3):1308. doi:10.3390/ijms23031308