211
Views
3
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

RGS5 as a Biomarker of Pericytes, Involvement in Vascular Remodeling and Pulmonary Arterial Hypertension

, , , , &
Pages 673-688 | Received 31 Jul 2023, Accepted 12 Oct 2023, Published online: 20 Oct 2023

References

  • Ruopp NF, Cockrill BA. Diagnosis and Treatment of Pulmonary Arterial Hypertension. JAMA-J Am Med Assoc. 2022;327(14):1379. doi:10.1001/jama.2022.4402
  • Bordenave J, Thuillet R, Tu L, et al. Neutralization of CXCL12 attenuates established pulmonary hypertension in rats. CARDIOVASC RES. 2020;116:686–697. doi:10.1093/cvr/cvz153
  • Rabinovitch M. Molecular pathogenesis of pulmonary arterial hypertension. J Clin Invest. 2012;122(12):4306–4313. doi:10.1172/JCI60658
  • Hassoun PM. Pulmonary Arterial Hypertension. New Engl J Med. 2021;385(25):2361–2376. doi:10.1056/NEJMra2000348
  • Galiè N, Channick RN, Frantz RP, et al. Risk stratification and medical therapy of pulmonary arterial hypertension. Eur Respir J. 2019;53(1):1801889. doi:10.1183/13993003.01889-2018
  • Boucly A, Weatherald J, Savale L, et al. Risk assessment, prognosis and guideline implementation in pulmonary arterial hypertension. Eur Respir J. 2017;50(2):1700889. doi:10.1183/13993003.00889-2017
  • Ricard N, Tu L, Le Hiress M, et al. Increased Pericyte Coverage Mediated by Endothelial-Derived Fibroblast Growth Factor-2 and Interleukin-6 Is a Source of Smooth Muscle–Like Cells in Pulmonary Hypertension. Circulation. 2014;129(15):1586–1597. doi:10.1161/CIRCULATIONAHA.113.007469
  • Budhiraja R, Tuder RM, Hassoun PM. Endothelial Dysfunction in Pulmonary Hypertension. CIRCULATION. 2004;109(2):159–165. doi:10.1161/01.CIR.0000102381.57477.50
  • Simonneau G, Montani D, Celermajer DS, et al. Haemodynamic definitions and updated clinical classification of pulmonary hypertension. Eur Respir J. 2019;53(1):1801913. doi:10.1183/13993003.01913-2018
  • Tuder RM. Pulmonary vascular remodeling in pulmonary hypertension. Cell Tissue Res. 2017;367(3):643–649. doi:10.1007/s00441-016-2539-y
  • Jeffery TK, Wanstall JC. Pulmonary vascular remodeling: a target for therapeutic intervention in pulmonary hypertension. Pharmacology Therapeutic. 2001;92(1):1–20. doi:10.1016/S0163-7258(01)00157-7
  • Mamazhakypov A, Hein L, Lother A. Mineralocorticoid receptors in pulmonary hypertension and right heart failure: from molecular biology to therapeutic targeting. Pharmacol Therapeut. 2022;231:107987. doi:10.1016/j.pharmthera.2021.107987
  • Pak O, Aldashev A, Welsh D, Peacock A. The effects of hypoxia on the cells of the pulmonary vasculature. Eur Respir J. 2007;30(2):364–372. doi:10.1183/09031936.00128706
  • Humbert M, Guignabert C, Bonnet S, et al. Pathology and pathobiology of pulmonary hypertension: state of the art and research perspectives. Eur Respir J. 2019;53(1):1801887. doi:10.1183/13993003.01887-2018
  • Thompson AAR, Lawrie A. Targeting Vascular Remodeling to Treat Pulmonary Arterial Hypertension. Trends Mol Med. 2017;23(1):31–45. doi:10.1016/j.molmed.2016.11.005
  • Yuan K, Shamskhou EA, Orcholski ME, et al. Loss of Endothelium-Derived Wnt5a Is Associated with Reduced Pericyte Recruitment and Small Vessel Loss in Pulmonary Arterial Hypertension. Circulation. 2019;139(14):1710–1724. doi:10.1161/CIRCULATIONAHA.118.037642
  • Yuan K, Agarwal S, Chakraborty A, et al. Lung Pericytes in Pulmonary Vascular Physiology and Pathophysiology. Compr Physiol. 2021;11:2227–2247.
  • Berger M, Bergers G, Arnold B, Hämmerling GJ, Ganss R. Regulator of G-protein signaling-5 induction in pericytes coincides with active vessel remodeling during neovascularization. Blood. 2005;105:1094–1101. doi:10.1182/blood-2004-06-2315
  • De Vries L, Zheng B, Fischer T, Elenko E, Farquhar MG. The Regulator of G Protein Signaling Family. Annu Rev Pharmacol. 2000;40:235–271. doi:10.1146/annurev.pharmtox.40.1.235
  • Stearman RS, Bui QM, Speyer G, et al. Systems Analysis of the Human Pulmonary Arterial Hypertension Lung Transcriptome. Am J Resp Cell Mol. 2019;60(6):637–649. doi:10.1165/rcmb.2018-0368OC
  • Renaud L, Da Silveira WA, Takamura N, Hardiman G, Feghali-Bostwick C. Prominence of IL6, IGF, TLR, and Bioenergetics Pathway Perturbation in Lung Tissues of Scleroderma Patients with Pulmonary Fibrosis. Front Immunol. 2020;11. doi:10.3389/fimmu.2020.00383
  • Mura M, Cecchini MJ, Joseph M, Granton JT. Osteopontin lung gene expression is a marker of disease severity in pulmonary arterial hypertension. Respirology. 2019;24(11):1104–1110. doi:10.1111/resp.13557
  • Zhao YD, Yun HZH, Peng J, et al. De novo synthesize of bile acids in pulmonary arterial hypertension lung. Metabolomics. 2014;10(6):1169–1175. doi:10.1007/s11306-014-0653-y
  • Saygin D, Tabib T, Bittar H, et al. Transcriptional profiling of lung cell populations in idiopathic pulmonary arterial hypertension. Pulm circ. 2020;10(1):1–15. doi:10.1177/2045894020908782
  • Gentleman RC, Carey VJ, Bates DM, et al. Bioconductor: open software development for computational biology and bioinformatics. Genome BIOL. 2004;5R80.
  • Xu J, Zhou H, Cheng Y, Xiang G. Identifying potential signatures for atherosclerosis in the context of predictive, preventive, and personalized medicine using integrative bioinformatics approaches and machine-learning strategies. Epma J. 2022;13(3):433–449. doi:10.1007/s13167-022-00289-y
  • Chang YC, Liu X, Kim JDO, et al. Multiple Genes for Essential-Hypertension Susceptibility on Chromosome 1q. Am J Hum Genet. 2007;80:253–264. doi:10.1086/510918
  • Xiao B, Zhang Y, Niu W, Gao P, Zhu D. Haplotype-based association of regulator of G-protein signaling 5 gene polymorphisms with essential hypertension and metabolic parameters in Chinese. CLIN CHEM LAB MED. 2009;47(12). doi:10.1515/CCLM.2009.344
  • Arnold C, Demirel E, Feldner A, et al. Hypertension‐evoked RhoA activity in vascular smooth muscle cells requires RGS5. FASEB. 2018;32:2021–2035. doi:10.1096/fj.201700384RR
  • Bindea G, Mlecnik B, Hackl H, et al. ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics. 2009;25(8):1091–1093. doi:10.1093/bioinformatics/btp101
  • Maere S, Heymans K, Kuiper M. BiNGO: a Cytoscape plugin to assess overrepresentation of Gene Ontology categories in Biological Networks. Bioinformatics. 2005;21(16):3448–3449. doi:10.1093/bioinformatics/bti551
  • Ritchie ME, Phipson B, Wu D, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):e47. doi:10.1093/nar/gkv007
  • Wickham H. ggplot2: Elegant Graphics for Data Analysis. New York: Springer-Verlag; 2016.
  • Kolde R. pheatmap: pretty Heatmaps. R package version 1.0.12. 2019.
  • Chen H, Boutros PC. VennDiagram: a package for the generation of highly-customizable Venn and Euler diagrams in R. BMC Bioinform. 2011;12(1):35. doi:10.1186/1471-2105-12-35
  • Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinform. 2008;9(1):559. doi:10.1186/1471-2105-9-559
  • Barrett T, Wilhite SE, Ledoux P, et al. NCBI GEO: archive for functional genomics data sets—update. Nucleic Acids Res. 2012;41(D1):D991–D995. doi:10.1093/nar/gks1193
  • Sanz H, Valim C, Vegas E, Oller JM, Reverter F. SVM-RFE: selection and visualization of the most relevant features through non-linear kernels. BMC Bioinform. 2018;19(1). doi:10.1186/s12859-018-2451-4
  • Kolde R, Laur S, Adler P, Vilo J. Robust rank aggregation for gene list integration and meta-analysis. Bioinformatics. 2012;28(4):573–580. doi:10.1093/bioinformatics/btr709
  • Robin X, Turck N, Hainard A, et al. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinform. 2011;12(1):77. doi:10.1186/1471-2105-12-77
  • Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol. 2018;36(5):411–420. doi:10.1038/nbt.4096
  • Aran D, Looney AP, Liu L, et al. Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat Immunol. 2019;20(2):163–172. doi:10.1038/s41590-018-0276-y
  • Li J, Jia M, Liu M, et al. The effect of activated kappa-opioid receptor (kappa-OR) on the role of calcium sensing receptor (CaSR) in preventing hypoxic pulmonary hypertension development. Biomed Pharmacother. 2020;125:109931. doi:10.1016/j.biopha.2020.109931
  • Rabinovitch M, Guignabert C, Humbert M, Nicolls MR. Inflammation and Immunity in the Pathogenesis of Pulmonary Arterial Hypertension. Circ Res. 2014;115(1):165–175. doi:10.1161/CIRCRESAHA.113.301141
  • Orlidge A, D’Amore PA. Inhibition of Capillary Endothelial Cell Growth by Pericytes and Smooth Muscle Cells. J Cell Biol. 1987;105(3):1455–1462. doi:10.1083/jcb.105.3.1455
  • Meyrick B, Fujiwara K, Reid L. Smooth muscle myosin in precursor and mature smooth muscle cells in normal pulmonary arteries and the effect of hypoxia. Exp Lung Res. 1981;2(4):303. doi:10.3109/01902148109052325
  • Yuan K, Orcholski ME, Panaroni C, et al. Activation of the Wnt/Planar Cell Polarity Pathway Is Required for Pericyte Recruitment during Pulmonary Angiogenesis. Am J Pathol. 2015;185(1):69–84. doi:10.1016/j.ajpath.2014.09.013
  • Khoury J, Langleben D. Heparin-like molecules inhibit pulmonary vascular pericyte proliferation in vitro. Am J Physiol-Lung C. 2000;279(2):L252–L261. doi:10.1152/ajplung.2000.279.2.L252
  • Xu W, Erzurum SC. Endothelial cell energy metabolism, proliferation, and apoptosis in pulmonary hypertension. Compr Physiol. 2011;1(1):357. doi:10.1002/cphy.c090005
  • Voelkel NF, Gomez-Arroyo J, Abbate A, Bogaard HJ, Nicolls MR. Pathobiology of pulmonary arterial hypertension and right ventricular failure. Eur Respir J. 2012;40(6):1555–1565. doi:10.1183/09031936.00046612
  • Chang YT, Tseng CN, Tannenberg P, et al. Perlecan heparan sulfate deficiency impairs pulmonary vascular development and attenuates hypoxic pulmonary hypertension. Cardiovasc Res. 2015;107(1):20–31. doi:10.1093/cvr/cvv143
  • Díaz-Flores L, Gutiérrez R, Madrid JF, et al. Pericytes. Morphofunction, interactions and pathology in a quiescent and activated mesenchymal cell niche. Histol Histopathol. 2009;24(7):909. doi:10.14670/HH-24.909
  • Jasmin JF, Calderone A, Leung TK, Villeneuve L, Dupuis J. Lung structural remodeling and pulmonary hypertension after myocardial infarction: complete reversal with irbesartan. Cardiovasc Res. 2003;58(3):621–631. doi:10.1016/S0008-6363(03)00290-6
  • Mitchell TS, Bradley J, Robinson GS, Shima DT, Ng Y. RGS5 expression is a quantitative measure of pericyte coverage of blood vessels. Angiogenesis. 2008;11(2):141–151. doi:10.1007/s10456-007-9085-x
  • Harrell CR, Simovic Markovic B, Fellabaum C, Arsenijevic A, Djonov V, Volarevic V. Molecular mechanisms underlying therapeutic potential of pericytes. J Biomed Sci. 2018;25(1):21. doi:10.1186/s12929-018-0423-7
  • Cho H, Kozasa T, Bondjers C, Betsholtz C, Kehrl JH. Pericyte-specific expression of Rgs5: implications for PDGF and EDG receptor signaling during vascular maturation. FASEB. 2003;17(3):1–17. doi:10.1096/fj.02-0340fje
  • Bondjers C, Kalén M, Hellström M, et al. Transcription Profiling of Platelet-Derived Growth Factor-B-Deficient Mouse Embryos Identifies RGS5 as a Novel Marker for Pericytes and Vascular Smooth Muscle Cells. Am J Pathol. 2003;162(3):721–729. doi:10.1016/S0002-9440(10)63868-0
  • Özen I, Roth M, Barbariga M, et al. Loss of Regulator of G-Protein Signaling 5 Leads to Neurovascular Protection in Stroke. Stroke. 2018;49(9):2182–2190. doi:10.1161/STROKEAHA.118.020124
  • Roth M, Gaceb A, Enström A, et al. Regulator of G‐protein signaling 5 regulates the shift from perivascular to parenchymal pericytes in the chronic phase after stroke. FASEB. 2019;33:8990–8998. doi:10.1096/fj.201900153R
  • Nisancioglu MH, Mahoney WM, Kimmel DD, Schwartz SM, Betsholtz C, Genove G. Generation and Characterization of rgs5 Mutant Mice. Mol Cell Biol. 2008;28:2324–2331. doi:10.1128/MCB.01252-07
  • Seki N, Sugano S, Suzuki Y, et al. Isolation, tissue expression, and chromosomal assignment of human RGS5, a novel G-protein signaling regulator gene. J Hum Genet. 1998;43(3):202–205. doi:10.1007/s100380050071
  • Özen I, Deierborg T, Miharada K, et al. Brain pericytes acquire a microglial phenotype after stroke. Acta Neuropathol. 2014;128(3):381–396. doi:10.1007/s00401-014-1295-x
  • Mahoney WM, Fleming JN, Schwartz SM. A Unifying Hypothesis for Scleroderma: identifying a Target Cell for Scleroderma. Curr Rheumatol Rep. 2011;13(1):28–36. doi:10.1007/s11926-010-0152-8
  • Okonkwo UA, Chen L, Ma D, et al. Compromised angiogenesis and vascular Integrity in impaired diabetic wound healing. PLoS One. 2020;15(4):e231962. doi:10.1371/journal.pone.0231962